A Novel Deep Learning Approach to CSI Feedback Reporting for NR 5G Cellular Systems

被引:0
|
作者
Zimaglia, Elisa [1 ]
Riviello, Daniel G. [2 ]
Garello, Roberto [2 ]
Fantini, Roberto [1 ]
机构
[1] TIM SpA, Turin, Italy
[2] Politecn Torino, Dept Elect & Telecommun DET, Turin, Italy
关键词
5G; New Radio; Deep Learning; Convolutional Neural Network; CSI reporting;
D O I
10.1109/mttw51045.2020.9245055
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study 5G Channel State Information feedback reporting. We show that a Deep Learning approach based on Convolutional Neural Networks can be used to learn efficient encoding and decoding algorithms. We set up a fully compliant link level 5G-New Radio simulator with clustered delay line channel model and we consider a realistic scenario with multiple transmitting/receiving antenna schemes and noisy downlink channel estimation. Results show that our Deep Learning approach achieves results comparable with traditional methods and can also outperform them in some conditions.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 50 条
  • [21] Editorial: deep learning for 5G IoT systems
    Cheng, Xiaochun
    Zhang, Chengqi
    Qian, Yi
    Aloqaily, Moayad
    Xiao, Yang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (11) : 3049 - 3051
  • [22] Hybrid Limited Feedback in 5G Cellular Systems With Massive MIMO
    Wang, Hengzhi
    Wang, Wei
    Lau, Vincent K. N.
    Zhang, Zhaoyang
    IEEE SYSTEMS JOURNAL, 2017, 11 (01): : 50 - 61
  • [23] Synchronization Procedure in 5G NR Systems
    Omri, Aymen
    Shaqfeh, Mohammed
    Ali, Abdelmohsen
    Alnuweiri, Hussein
    IEEE ACCESS, 2019, 7 : 41286 - 41295
  • [24] Machine Learning Codebook Design for Initial Access and CSI Type-II Feedback in Sub-6-GHz 5G NR
    Dreifuerst, Ryan M.
    Heath Jr, Robert W.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (06) : 6411 - 6424
  • [25] A novel hybrid deep learning approach for 5G network traffic control and forecasting
    Dangi, Ramraj
    Lalwani, Praveen
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (07):
  • [26] A Joint Radar and Communication Approach for 5G NR using Reinforcement Learning
    Salami, Dariush
    Ning, Wanru
    Ruttik, Kalle
    Jantti, Riku
    Sigg, Stephan
    IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (05) : 106 - 112
  • [27] The Use of Machine Learning Techniques for Optimal Multicasting in 5G NR Systems
    Chukhno, Nadezhda
    Chukhno, Olga
    Moltchanov, Dmitri
    Gaydamaka, Anna
    Samuylov, Andrey
    Molinaro, Antonella
    Koucheryavy, Yevgeni
    Iera, Antonio
    Araniti, Giuseppe
    IEEE TRANSACTIONS ON BROADCASTING, 2023, 69 (01) : 201 - 214
  • [28] A Novel Compression CSI Feedback based on Deep Learning for FDD Massive MIMO Systems
    Wang, Yuting
    Zhang, Yibin
    Sun, Jinlong
    Gui, Guan
    Ohtsuki, Tomoaki
    Adachi, Fumiyuki
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [29] MRFNet: A Deep Learning-Based CSI Feedback Approach of Massive MIMO Systems
    Hu, Zhengyang
    Guo, Jianhua
    Liu, Guanzhang
    Zheng, Hanying
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3310 - 3314
  • [30] On using Deep Reinforcement Learning to balance Power Consumption and Latency in 5G NR
    Boutiba, Karim
    Ksentini, Adlen
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 6218 - 6223