Cluster Oscillation of a Fractional-Order Duffing System with Slow Variable Parameter Excitation

被引:2
|
作者
Li, Xianghong [1 ,2 ,3 ]
Wang, Yanli [2 ]
Shen, Yongjun [2 ,3 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Mech Engn, Shijiazhuang 050043, Hebei, Peoples R China
[3] Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional-order Duffing system; bifurcation; cluster oscillation; dynamic mechanism; PRIMARY RESONANCE;
D O I
10.3390/fractalfract6060295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The complicated dynamic behavior of a fractional-order Duffing system with slow variable parameter excitation is investigated. The stability and bifurcation behavior of the fast subsystem are analyzed by using the dynamic theory of fractional-order systems. The pitchfork bifurcation, Hopf bifurcation and limit cycle bifurcation are discussed in detail, and it was found that Hopf bifurcation only happens while the fractional order is bigger than 1. On the other hand, the influence of the amplitude of parametric excitation on cluster oscillation models is discussed. The results show that amplitude regulates cluster oscillation models with different bifurcation types. The point-point cluster oscillation only relates to pitchfork bifurcation. The point-cycle cluster oscillation includes pitchfork bifurcation and Hopf bifurcation. The point-cycle-cycle cluster oscillation involves three kinds of bifurcation, i.e., the pitchfork bifurcation, Hopf bifurcation and limit cycle bifurcation. The larger the amplitude, the more bifurcation types are involved. The research results of cluster oscillation and its generation mechanism will provide valuable theoretical basis for mechanical manufacturing and engineering practice.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Parameter estimation of the fractional-order Hammerstein-Wiener model using simplified refined instrumental variable fractional-order continuous time
    Allafi, Walid
    Zajic, Ivan
    Uddin, Kotub
    Burnham, Keith J.
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (15): : 2591 - 2598
  • [22] Finite-time stable fractional sliding mode control for fractional-order Duffing chaotic system
    Xu, Jin
    Sun, Yeguo
    Ma, Xiaoxia
    ICIC Express Letters, Part B: Applications, 2013, 4 (06): : 1733 - 1740
  • [23] A memory-free method for fractional-order Duffing systems subjected to combined periodic and colored excitation
    Li S.-J.
    Zhang Z.-C.
    Kong F.
    Han R.-J.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2023, 36 (04): : 923 - 933
  • [24] Bifurcation and resonance induced by fractional-order damping and time delay feedback in a Duffing system
    Yang, J. H.
    Zhu, H.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (05) : 1316 - 1326
  • [25] Effects of system parameter and fractional order on dynamic behavior evolution in fractional-order Genesio-Tesi system
    Li, Ruihong
    OPTIK, 2016, 127 (16): : 6695 - 6709
  • [26] A variable fractional-order inductor design
    Zhang, Li
    Kartci, Aslihan
    Bagci, Hakan
    Salama, Khaled N.
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2022, 50 (05) : 1388 - 1399
  • [27] Numerical simulation of fractional-order Duffing system with extended Mittag-Leffler derivatives
    Odibat, Zaid
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [28] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Du, Lin
    Zhao, Yunping
    Lei, Youming
    Hu, Jian
    Yue, Xiaole
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1921 - 1933
  • [29] Superharmonic Resonance of Fractional-Order Mathieu-Duffing Oscillator
    Niu, Jiangchuan
    Li, Xiaofeng
    Xing, Haijun
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (07):
  • [30] Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator
    Yongjun Shen
    Hang Li
    Shaopu Yang
    Mengfei Peng
    Yanjun Han
    Nonlinear Dynamics, 2020, 102 : 1485 - 1497