Learning Discriminative Features with Multiple Granularities for Person Re-Identification

被引:953
|
作者
Wang, Guanshuo [1 ]
Yuan, Yufeng [2 ]
Chen, Xiong [2 ]
Li, Jiwei [2 ]
Zhou, Xi [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Cooperat Medianet Innovat Ctr, Shanghai, Peoples R China
[2] CloudWalk Technol, Guangzhou, Peoples R China
关键词
Person re-identification; Feature learning; Multi-branch deep network; NETWORK;
D O I
10.1145/3240508.3240552
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The combination of global and partial features has been an essential solution to improve discriminative performances in person re-identification (Re-ID) tasks. Previous part-based methods mainly focus on locating regions with specific pre-defined semantics to learn local representations, which increases learning difficulty but not efficient or robust to scenarios with large variances. In this paper, we propose an end-to-end feature learning strategy integrating discriminative information with various granularities. We carefully design the Multiple Granularity Network (MGN), a multi-branch deep network architecture consisting of one branch for global feature representations and two branches for local feature representations. Instead of learning on semantic regions, we uniformly partition the images into several stripes, and vary the number of parts in different local branches to obtain local feature representations with multiple granularities. Comprehensive experiments implemented on the mainstream evaluation datasets including Market-1501, DukeMTMC-reid and CUHK03 indicate that our method robustly achieves state-of-the-art performances and outperforms any existing approaches by a large margin. For example, on Market-1501 dataset in single query mode, we obtain a top result of Rank-1/mAP=96.6%/94.2% with this method after re-ranking.
引用
收藏
页码:274 / 282
页数:9
相关论文
共 50 条
  • [31] Deep features for person re-identification on metric learning
    Wu, Wanyin
    Tao, Dapeng
    Li, Hao
    Yang, Zhao
    Cheng, Jun
    PATTERN RECOGNITION, 2021, 110
  • [32] Discriminative Dictionary Learning With Ranking Metric Embedded for Person Re-Identification
    Cheng, De
    Chang, Xiaojun
    Liu, Li
    Hauptmann, Alexander G.
    Gong, Yihong
    Zheng, Nanning
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 964 - 970
  • [33] Person Re-identification by Descriptive and Discriminative Classification
    Hirzer, Martin
    Beleznai, Csaba
    Roth, Peter M.
    Bischof, Horst
    IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 : 91 - 102
  • [34] Unsupervised Attention Based Instance Discriminative Learning for Person Re-Identification
    Nikhal, Kshitij
    Riggan, Benjamin S.
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2421 - 2430
  • [35] Cross-View Discriminative Feature Learning for Person Re-Identification
    Borgia, Alessandro
    Hua, Yang
    Kodirov, Elyor
    Robertson, Neil M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5338 - 5349
  • [36] Discriminative Feature Learning with Consistent Attention Regularization for Person Re-identification
    Zhou, Sanping
    Wang, Fei
    Huang, Zeyi
    Wang, Jinjun
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8039 - 8048
  • [37] Locality Based Discriminative Measure for Multiple-shot Person Re-identification
    Li, Wei
    Wu, Yang
    Mukunoki, Masayuki
    Minoh, Michihiko
    2013 10TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2013), 2013, : 312 - 317
  • [38] Evaluating Features for Person Re-Identification
    Wang, Jiabao
    Li, Hang
    Li, Yang
    Xu, Yulong
    Miao, Zhuang
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2016, : 214 - 219
  • [39] Unsupervised learning of visual invariant features for person re-identification
    Xia, Daoxun
    Guo, Fang
    Liu, Haojie
    Yu, Sheng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) : 7495 - 7503
  • [40] Learning fused features with parallel training for person re-identification
    Li, Xuan
    Zhang, Tao
    Zhao, Xin
    Sun, Xing
    Yi, Zhengming
    KNOWLEDGE-BASED SYSTEMS, 2021, 220