A Highly Reliable and Energy Efficient Radiation Hardened 12T SRAM Cell Design

被引:23
|
作者
Kumar, Chaudhry Indra [1 ]
Anand, Bulusu [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Elect & Commun Engn, Roorkee 247667, Uttar Pradesh, India
关键词
Energy efficient memory; radiation hardened memory; single node upset (SEU); single event multiple node upsets (SEMNU); MEMORY CELL; CHARGE; POWER;
D O I
10.1109/TDMR.2019.2956601
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel energy efficient 12T memory cell is proposed which is radiation hardened by design (RHD) to tolerate single-event multiple-node upsets (SEMNU) in near threshold voltage regime. The radiation hardness of the proposed memory cell is improved by controlling the cross coupled inverters' PMOS devices through dummy access transistors. We validated the proposed memory cell in STMicroelectronics 65-nm CMOS technology. The post layout parasitic extracted simulations show that by employing the proposed RHD-12T memory cell, an average improvement of similar to 42%, 17%, 17%/9% and 6%/7% in layout area, power dissipation, read/write access time, and read/write static noise margin, respectively, is obtained over the recently reported 12T memory cell at supply voltage of 0.4V. We also validated the proposed memory cell at 32-nm CMOS technology node using technology computer-aided design (TCAD) mixed-mode simulations. In the 32-nm technology, the proposed RHD-12T memory cell shows an average improvement of similar to 15%, 10%/56%, and 8%/10% in power dissipation, read/write access time, and read/write static noise margin, respectively, over the 12T memory cell at supply voltage of 0.3V. Combining layout-topology, HSPICE post layout simulations and TCAD mixed mode simulation results clearly show that the proposed memory cell effectively tolerates single event upset as well as SEMNU. In 32nm technology our memory cell can provide SEMNU tolerance up to the value of LET equals to 62 Mev-cm(2)/mg.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 50 条
  • [1] A Novel Highly Reliable 12T SRAM Bitcell Design
    Jiang, Jianwei
    Lin, Dianpeng
    Xiao, Jun
    Zou, Shichang
    2019 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2019,
  • [2] A highly stable and low-cost 12T radiation hardened SRAM cell design for aerospace application
    Liu, Zhongyang
    Xie, Yuqiao
    Xu, Tao
    Liu, Qing
    Bi, Dawei
    Hu, Zhiyuan
    Zou, Shichang
    Zhang, Zhengxuan
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2023, 51 (08) : 3938 - 3948
  • [3] A Reliable and high performance Radiation Hardened Schmitt Trigger 12T SRAM cell for space applications
    Soni, Lokesh
    Pandey, Neeta
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2024, 176
  • [4] A highly reliable radiation hardened 8T SRAM cell design
    Lv, Yinghuan
    Wang, Qing
    Ge, Hao
    Xie, Tiantian
    Chen, Jing
    MICROELECTRONICS RELIABILITY, 2021, 125
  • [5] Radiation hardened 12T SRAM cell with improved writing capability for space applications
    Sharma, Rishabh
    Mondal, Debabrata
    Shah, Ambika Prasad
    Memories - Materials, Devices, Circuits and Systems, 2023, 5
  • [6] A High-Reliability 12T SRAM Radiation-Hardened Cell for Aerospace Applications
    Yao, Ruxue
    Lv, Hongliang
    Zhang, Yuming
    Chen, Xu
    Zhang, Yutao
    Liu, Xingming
    Bai, Geng
    MICROMACHINES, 2023, 14 (07)
  • [7] Design of highly reliable radiation hardened 10T SRAM cell for low voltage applications
    Shekhar, Raghav
    Kumar, Chaudhry Indra
    INTEGRATION-THE VLSI JOURNAL, 2022, 87 : 176 - 181
  • [8] Design and Analysis of a Radiation Resistant 12T SRAM Cell for Aerospace Applications
    Bikki, Pavankumar
    Bharathi, M. L. V. V.
    Jyothi, K. Madhavi
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2023, 16 (04) : 372 - 379
  • [9] Design of Radiation Hardened 12T SRAM with Enhanced Reliability and Read/Write Latency for Space Application
    Ansari, Mohd Sakib S.
    Kavitha, S.
    Reniwal, B. S.
    Vishvakarma, S. K.
    2023 36TH INTERNATIONAL CONFERENCE ON VLSI DESIGN AND 2023 22ND INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS, VLSID, 2023, : 104 - 108
  • [10] Radiation Hardened and Leakage Power Attack Resilient 12T SRAM Cell for Secure Nuclear Environments
    Mondal, Debabrata
    Naz, Syed Farah
    Shah, Ambika Prasad
    PROCEEDINGS OF THE GREAT LAKES SYMPOSIUM ON VLSI 2023, GLSVLSI 2023, 2023, : 227 - 228