FPGA-Based Implementation of a Real-Time Object Recognition System Using Convolutional Neural Network

被引:35
|
作者
Gilan, Ali Azarmi [1 ]
Emad, Mohammad [1 ]
Alizadeh, Bijan [1 ]
机构
[1] Univ Tehran, Coll Engn, Sch Elect & Comp Engn, Tehran 14395515, Iran
关键词
Micromechanical devices; Convolution; Kernel; Bandwidth; Object recognition; Arrays; Real-time systems; Convolutional neural network; object recognition; FPGA; configurable architecture;
D O I
10.1109/TCSII.2019.2922372
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
High computational complexity and power consumption makes convolutional neural networks (CNNs) ineligible for real-time embedded applications. In this brief, we introduce a low power and flexible platform as a hardware accelerator for CNNs. The proposed architecture is fully configurable by a software library so that it can perform different CNN models with a reconfigurable hardware. The hardware accelerator is evaluated on a ZC706 evaluation board. We make use of the AlexNet architecture in a real-time object recognition application to demonstrate the effectiveness of the proposed CNN accelerator. The results show that the performance rates of 198.1 GOP/s using 512 DSP blocks and 23.14 GOP/s using 64 DSP blocks are achievable for the convolution and fully connected layers, respectively. Moreover, images are processed at 82 frames/s, which is significantly higher than existing implementations.
引用
收藏
页码:755 / 759
页数:5
相关论文
共 50 条
  • [21] An Energy-Efficient FPGA-based Convolutional Neural Network Implementation
    Irmak, Hasan
    Alachiotis, Nikolaos
    Ziener, Daniel
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [22] Efficient FPGA-Based Convolutional Neural Network Implementation for Edge Computing
    Cuong, Pham-Quoc
    Thinh, Tran Ngoc
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (03) : 479 - 487
  • [23] An FPGA-Based Energy-Efficient Reconfigurable Convolutional Neural Network Accelerator for Object Recognition Applications
    Li, Jixuan
    Un, Ka-Fai
    Yu, Wei-Han
    Mak, Pui-In
    Martins, Rui P.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (09) : 3143 - 3147
  • [24] An FPGA-Based Real-Time Moving Object Tracking Approach
    Chen, Wenjie
    Ma, Yangyang
    Chai, Zhilei
    Chen, Mingsong
    He, Daojing
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2017, 2017, 10393 : 65 - 80
  • [25] Real-time goat face recognition using convolutional neural network
    Billah, Masum
    Wang, Xihong
    Yu, Jiantao
    Jiang, Yu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 194
  • [26] VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition
    Maturana, Daniel
    Scherer, Sebastian
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 922 - 928
  • [27] A Real-Time American Sign Language Recognition System using Convolutional Neural Network for Real Datasets
    Kadhim, Rasha Amer
    Khamees, Muntadher
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2020, 9 (03): : 937 - 943
  • [28] An FPGA-Based Convolutional Neural Network Coprocessor
    Qiu, Changpei
    Wang, Xin'an
    Zhao, Tianxia
    Li, Qiuping
    Wang, Bo
    Wang, Hu
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [29] Real-Time Emulator of an Induction Motor: FPGA-based Implementation
    Esparza, M. A.
    Alvarez-Salas, R.
    Miranda, H.
    Cabal-Yepez, E.
    Garcia-Perez, A.
    Romero-Troncoso, R. J.
    Osornio-Rios, R. A.
    2012 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2012,
  • [30] Real-time image distortion correction using FPGA-based system
    Hernandez, Alvaro
    Gardel, Alfredo
    Perez, Laura
    Bravo, Ignacio
    Mateos, Raul
    Sanchez, Eduardo
    IECON 2006 - 32ND ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS, VOLS 1-11, 2006, : 1366 - +