On clique coverings of complete multipartite graphs

被引:0
|
作者
Davoodi, Akbar [1 ]
Gerbner, Daniel [2 ]
Methuku, Abhishek [3 ]
Vizer, Mate [2 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] MTA Alfred Renyi Inst Math, Budapest, Hungary
[3] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
关键词
Clique covering; Sigma clique covering; Qualitatively independent family;
D O I
10.1016/j.dam.2019.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A clique covering of a graph G is a set of cliques of G such that any edge of G is contained in one of these cliques, and the weight of a clique covering is the sum of the sizes of the cliques in it. The sigma clique cover number scc(G) of a graph G, is defined as the smallest possible weight of a clique covering of G. Let K-t(d) denote the complete t-partite graph with each part of size d. We prove that for any fixed d >= 2, we have lim(t ->infinity) scc(K-t(d)) = d/2t log t. This disproves a conjecture of Davoodi et al. (2016). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 50 条
  • [41] LIST COLORING OF COMPLETE MULTIPARTITE GRAPHS
    Vetrik, Tomas
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 31 - 37
  • [42] Complete multipartite graphs and Braess edges
    Hu, Yuxiang
    Kirkland, Steve
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 579 : 284 - 301
  • [43] Competitively orientable complete multipartite graphs
    Choi, Myungho
    Kwak, Minki
    Kim, Suh-Ryung
    DISCRETE MATHEMATICS, 2022, 345 (09)
  • [44] Heroes in oriented complete multipartite graphs
    Aboulker, Pierre
    Aubian, Guillaume
    Charbit, Pierre
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 652 - 669
  • [45] Bell Numbers of Complete Multipartite Graphs
    Allagan, Julian
    Serkan, Christopher
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2016, 24 (02) : 234 - 242
  • [46] On the Seidel Integral Complete Multipartite Graphs
    Sheng-mei LV
    Liang WEI
    Hai-xing ZHAO
    Acta Mathematicae Applicatae Sinica, 2012, (04) : 705 - 710
  • [47] Representation numbers of complete multipartite graphs
    Akhtar, Reza
    Evans, Anthony B.
    Pritikin, Dan
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1158 - 1165
  • [48] On the seidel integral complete multipartite graphs
    Lv, Sheng-mei
    Wei, Liang
    Zhao, Hai-xing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (04): : 705 - 710
  • [49] Regular embeddings of complete multipartite graphs
    Du, SF
    Kwak, JH
    Nedela, R
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (3-4) : 505 - 519
  • [50] Distinguishing partitions of complete multipartite graphs
    Goff, Michael
    ARS MATHEMATICA CONTEMPORANEA, 2016, 10 (01) : 45 - 66