On clique coverings of complete multipartite graphs

被引:0
|
作者
Davoodi, Akbar [1 ]
Gerbner, Daniel [2 ]
Methuku, Abhishek [3 ]
Vizer, Mate [2 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] MTA Alfred Renyi Inst Math, Budapest, Hungary
[3] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
关键词
Clique covering; Sigma clique covering; Qualitatively independent family;
D O I
10.1016/j.dam.2019.09.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A clique covering of a graph G is a set of cliques of G such that any edge of G is contained in one of these cliques, and the weight of a clique covering is the sum of the sizes of the cliques in it. The sigma clique cover number scc(G) of a graph G, is defined as the smallest possible weight of a clique covering of G. Let K-t(d) denote the complete t-partite graph with each part of size d. We prove that for any fixed d >= 2, we have lim(t ->infinity) scc(K-t(d)) = d/2t log t. This disproves a conjecture of Davoodi et al. (2016). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 50 条
  • [2] Edge clique coverings of graphs
    Badekha, I. A.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2013, 19 (01): : 69 - 83
  • [3] CLIQUE COVERINGS OF GRAPHS - A SURVEY
    PULLMAN, NJ
    LECTURE NOTES IN MATHEMATICS, 1983, 1036 : 72 - 85
  • [4] Simple Minimum (K4 - e)-coverings of Complete Multipartite Graphs
    Gao, Yu Feng
    Chang, Yan Xun
    Feng, Tao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (05) : 632 - 648
  • [5] Clique coverings and partitions of line graphs
    Li, Bo-Jr
    Chang, Gerard J.
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2075 - 2079
  • [6] Simple Minimum(K4-e)-coverings of Complete Multipartite Graphs
    Yu Feng GAO
    Yan Xun CHANG
    Tao FENG
    Acta Mathematica Sinica,English Series, 2019, 35 (05) : 632 - 648
  • [7] EXTREMAL CLIQUE COVERINGS OF COMPLEMENTARY GRAPHS
    DECAEN, D
    ERDOS, P
    PULLMANN, NJ
    WORMALD, NC
    COMBINATORICA, 1986, 6 (04) : 309 - 314
  • [8] Simple Minimum (K4 − e)-coverings of Complete Multipartite Graphs
    Yu Feng Gao
    Yan Xun Chang
    Tao Feng
    Acta Mathematica Sinica, English Series, 2019, 35 : 632 - 648
  • [9] On graphs with complete multipartite μ-graphs
    Jurisic, Aleksandar
    Munemasa, Akihiro
    Tagami, Yuki
    DISCRETE MATHEMATICS, 2010, 310 (12) : 1812 - 1819
  • [10] Clique coverings and claw-free graphs
    Bujtas, Csilla
    Davoodi, Akbar
    Gyori, Ervin
    Tuza, Zsolt
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 88