Empty convex hexagons in planar point sets

被引:61
|
作者
Gerken, Tobias [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
关键词
Erdos-Szekeres problem; Ramsey theory; convex polygons and polyhedra; empty hexagon problem;
D O I
10.1007/s00454-007-9018-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Erdos asked whether every sufficiently large set of points in general position in the plane contains six points that form a convex hexagon without any points from the set in its interior. Such a configuration is called an empty convex hexagon. In this paper, we answer the question in the affirmative. We show that every set that contains the vertex set of a convex 9-gon also contains an empty convex hexagon.
引用
收藏
页码:239 / 272
页数:34
相关论文
共 50 条
  • [41] ADAPTIVE ESTIMATION OF PLANAR CONVEX SETS
    Cai, T. Tony
    Guntuboyina, Adityanand
    Wei, Yuting
    ANNALS OF STATISTICS, 2018, 46 (03): : 1018 - 1049
  • [42] On the Boundary of the Union of Planar Convex Sets
    J. Pach
    M. Sharir
    Discrete & Computational Geometry, 1999, 21 : 321 - 328
  • [43] The perimeter of rounded convex planar sets
    László C.
    Periodica Mathematica Hungarica, 2007, 54 (1) : 31 - 49
  • [44] Unbounded convex point sets
    Stoker, JJ
    AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 : 165 - 179
  • [45] On the transformation of convex point sets
    Walsh, JL
    ANNALS OF MATHEMATICS, 1920, 22 : 262 - 266
  • [46] CONVEX BRIANCHON HEXAGONS
    BONDESEN, A
    AMERICAN MATHEMATICAL MONTHLY, 1987, 94 (04): : 373 - 375
  • [47] SETS IN R(D) WITH NO LARGE EMPTY CONVEX SUBSETS
    VALTR, P
    DISCRETE MATHEMATICS, 1992, 108 (1-3) : 115 - 124
  • [48] Convex Surfaces with Planar Polar Sets and Point-Source Shadow-Boundaries
    Soltan, Valeriu
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (02) : 645 - 660
  • [49] Empty pseudo-triangles in point sets
    Ahn, Hee-Kap
    Bae, Sang Won
    van Kreveld, Marc
    Reinbacher, Iris
    Speckmann, Bettina
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (18) : 2205 - 2213
  • [50] Irregularities of distribution and geometry of planar convex sets
    Brandolini, Luca
    Travaglini, Giancarlo
    ADVANCES IN MATHEMATICS, 2022, 396