INVESTIGATION OF THE K2 ALGORITHM IN LEARNING BAYESIAN NETWORK CLASSIFIERS

被引:35
|
作者
Lerner, Boaz [1 ]
Malka, Roy [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Ind Engn & Management, IL-84105 Beer Sheva, Israel
关键词
CLASSIFICATION;
D O I
10.1080/08839514.2011.529265
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We experimentally study the K2 algorithm in learning a Bayesian network (BN) classifier for image detection of cytogenetic abnormalities. Starting from an initial BN structure, the K2 algorithm searches the BN structure space and selects the structure maximizing the K2 metric. To improve the accuracy of the K2-based BN classifier, we investigate the K2 algorithm initial ordering, search procedure, and metric. We find that BN structures learned using random initial orderings, orderings based on expert knowledge, or a scatter criterion are comparable and lead to similar classification accuracies. Replacing the K2 search with hill-climbing search improves the accuracy as does the inclusion of hidden nodes in the BN structure. Also, we demonstrate that though the maximization of the K2 metric solicits structures providing improved inference, these structures contribute to only limited classification accuracy.
引用
收藏
页码:74 / 96
页数:23
相关论文
共 50 条
  • [21] Efficient parameter learning of Bayesian network classifiers
    Zaidi, Nayyar A.
    Webb, Geoffrey I.
    Carman, Mark J.
    Petitjean, Francois
    Buntine, Wray
    Hynes, Mike
    De Sterck, Hans
    MACHINE LEARNING, 2017, 106 (9-10) : 1289 - 1329
  • [22] On Discriminative Parameter Learning of Bayesian Network Classifiers
    Pernkopf, Franz
    Wohlmayr, Michael
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 221 - 237
  • [23] Adaptive learning algorithms for Bayesian network classifiers
    Castillo, Gladys
    AI COMMUNICATIONS, 2008, 21 (01) : 87 - 88
  • [24] Learning Bayesian network classifiers by risk minimization
    Kelner, Roy
    Lerner, Boaz
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2012, 53 (02) : 248 - 272
  • [25] Learning Bayesian network classifiers by risk minimization
    Kelner, Roy
    Lerner, Boaz
    International Journal of Approximate Reasoning, 2012, 53 (02): : 248 - 272
  • [26] Learning continuous time Bayesian network classifiers
    Codecasa, Daniele
    Stella, Fabio
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2014, 55 (08) : 1728 - 1746
  • [27] PSO-K2PC: Bayesian structure learning using optimized K2 algorithm for parents-children detection
    Bouazizi S.
    Benmohamed E.
    Ltifi H.
    International Journal of Computers and Applications, 2023, 45 (09) : 553 - 563
  • [28] A naive learning algorithm for class-bridge-decomposable multidimensional Bayesian network classifiers
    Lv, Yali
    Hu, Weixin
    Liang, Jiye
    Qian, Yuhua
    Miao, Junzhong
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (19):
  • [29] Bagging k-dependence Bayesian network classifiers
    Wang, Limin
    Qi, Sikai
    Liu, Yang
    Lou, Hua
    Zuo, Xin
    INTELLIGENT DATA ANALYSIS, 2021, 25 (03) : 641 - 667
  • [30] Learning Based K-Dependence Bayesian Classifiers
    Wang, Limin
    Xie, Yuanxiang
    Zhou, Huisi
    Wang, Yiming
    Guo, Jiangshan
    CLOUD COMPUTING AND SECURITY, ICCCS 2016, PT II, 2016, 10040 : 553 - 566