Adversarial parameter defense by multi-step risk minimization

被引:3
|
作者
Zhang, Zhiyuan [1 ]
Luo, Ruixuan [2 ]
Ren, Xuancheng [1 ]
Su, Qi [1 ,3 ]
Li, Liangyou [4 ]
Sun, Xu [1 ,2 ]
机构
[1] Peking Univ, Sch EECS, MOE Key Lab Computat Linguist, Beijing, Peoples R China
[2] Peking Univ, Ctr Data Sci, Beijing, Peoples R China
[3] Peking Univ, Sch Foreign Languages, Beijing, Peoples R China
[4] Huawei Noahs Ark Lab, Hong Kong, Peoples R China
基金
国家重点研发计划;
关键词
Vulnerability of deep neural networks; Parameter corruption; Adversarial parameter defense; NETWORKS;
D O I
10.1016/j.neunet.2021.08.022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Previous studies demonstrate DNNs' vulnerability to adversarial examples and adversarial training can establish a defense to adversarial examples. In addition, recent studies show that deep neural networks also exhibit vulnerability to parameter corruptions. The vulnerability of model parameters is of crucial value to the study of model robustness and generalization. In this work, we introduce the concept of parameter corruption and propose to leverage the loss change indicators for measuring the flatness of the loss basin and the parameter robustness of neural network parameters. On such basis, we analyze parameter corruptions and propose the multi-step adversarial corruption algorithm. To enhance neural networks, we propose the adversarial parameter defense algorithm that minimizes the average risk of multiple adversarial parameter corruptions. Experimental results show that the proposed algorithm can improve both the parameter robustness and accuracy of neural networks. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:154 / 163
页数:10
相关论文
共 50 条
  • [41] Construction modeling and parameter optimization of multi-step horizontal energy storage salt caverns
    Li, Jinlong
    Shi, Xilin
    Zhang, Shuai
    ENERGY, 2020, 203
  • [42] Multi-attention Generative Adversarial Network for multi-step vegetation indices forecasting using multivariate time series
    Ferchichi, Aya
    Abbes, Ali Ben
    Barra, Vincent
    Rhif, Manel
    Farah, Imed Riadh
    Engineering Applications of Artificial Intelligence, 2024, 128
  • [43] Multi-attention Generative Adversarial Network for multi-step vegetation indices forecasting using multivariate time series
    Ferchichi, Aya
    Ben Abbes, Ali
    Barra, Vincent
    Rhif, Manel
    Farah, Imed Riadh
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [44] Spatial-Temporal Semantic Generative Adversarial Networks for Flexible Multi-step Urban Flow Prediction
    Li, Lincan
    Bi, Jichao
    Yang, Kaixiang
    Luo, Fengji
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT III, 2022, 13531 : 763 - 775
  • [45] Gated Recurrent Units Network Based on Adversarial Training for Multi-Step Fault Prediction of RF Circuits
    Wu, Kunping
    Long, Bing
    Tang, Xiaoting
    Bu, Zhiyuan
    Liu, Zhen
    Kong, Dexuan
    2023 IEEE AUTOTESTCON, 2023,
  • [46] Equivalent Emission Minimization Strategy of Intelligent Connected HEV Based on Multi-step Prediction of Driving Intention
    Wang Y.
    Wang Z.
    Sun R.
    Wang C.
    Xiao K.
    Pan B.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (18): : 271 - 282
  • [47] Boosting multi-step autoregressive forecasts
    Ben Taieb, Souhaib
    Hyndman, Rob J.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 1), 2014, 32
  • [48] MULTI-STEP STRIPPING ON DEFORMED NUCLEI
    LUKYANOV, VK
    PETKOV, IZ
    PHYSICS LETTERS B, 1969, B 28 (06) : 368 - &
  • [49] Multi-Step Planning for Robotic Manipulation
    Pflueger, Max
    Sukhatme, Gaurav S.
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 2496 - 2501
  • [50] A note on multi-step difference schemes
    Guo, Bing
    Wang, Ren-Hong
    Zhu, Chun-Gang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (05) : 647 - 652