Nanostructured silicon for high capacity lithium battery anodes

被引:1212
|
作者
Szczech, Jeannine R. [1 ]
Jin, Song [1 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
关键词
LI-ION BATTERIES; SI THIN-FILM; SOLID-ELECTROLYTE-INTERPHASE; SI/GRAPHITE COMPOSITE ANODE; CORE-SHELL NANOWIRES; LONG CYCLE LIFE; ELECTROCHEMICAL PERFORMANCE; RECHARGEABLE BATTERIES; AMORPHOUS-SILICON; NEGATIVE ELECTRODES;
D O I
10.1039/c0ee00281j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanostructured silicon is promising for high capacity anodes in lithium batteries. The specific capacity of silicon is an order of magnitude higher than that of conventional graphite anodes, but the large volume change of silicon during lithiation and delithiation and the resulting poor cyclability has prevented its commercial application. This challenge could potentially be overcome by silicon nanostructures that can provide facile strain relaxation to prevent electrode pulverization, maintain effective electrical contact, and have the additional benefits of short lithium diffusion distances and enhanced mass transport. In this review, we present an overview of rechargeable lithium batteries and the challenges and opportunities for silicon anodes, then survey the performance of various morphologies of nanostructured silicon (thin film, nanowires/nanotubes, nanoparticles, and mesoporous materials) and their nanocomposites. Other factors that affect the performance of nanostructured silicon anodes, including solvent composition, additives, binders, and substrates, are also examined. Finally, we summarize the key lessons from the successes so far and offer perspectives and future challenges to enable the applications of silicon nanoanodes in practical lithium batteries at large scale.
引用
收藏
页码:56 / 72
页数:17
相关论文
共 50 条
  • [31] Silicon-containing anodes with high capacity loading for lithium-ion batteries
    Kuksenko, S. P.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2014, 50 (06) : 537 - 547
  • [32] Balanced approach to safety of high capacity silicon-germanium-carbon nanotube free-standing lithium ion battery anodes
    DiLeo, Roberta A.
    Ganter, Matthew J.
    Thone, Melissa N.
    Forney, Michael W.
    Staub, Jason W.
    Rogers, Reginald E.
    Landi, Brian J.
    NANO ENERGY, 2013, 2 (02) : 268 - 275
  • [33] Understanding the influence of polymer properties on the stability of high capacity silicon and lithium metal anodes
    Lopez, Jeffrey
    Pei, Allen
    Cui, Yi
    Bao, Zhenan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [34] Silicon-containing anodes with high capacity loading for lithium-ion batteries
    S. P. Kuksenko
    Russian Journal of Electrochemistry, 2014, 50 : 537 - 547
  • [35] High capacity silicon nitride-based composite anodes for lithium ion batteries
    de Guzman, Rhet C.
    Yang, Jinho
    Cheng, Mark Ming-Cheng
    Salley, Steven O.
    Ng, K. Y. Simon
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (35) : 14577 - 14584
  • [36] Benefits of Electronic Wiring and Spacers on Lithium Storage in Nanostructured Lithium-Ion Battery Anodes
    Shiva, Konda
    Das, Shyamal K.
    Bhattacharyya, Aninda J.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (07) : 720 - 723
  • [37] Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes
    Nian Liu
    Kaifu Huo
    Matthew T. McDowell
    Jie Zhao
    Yi Cui
    Scientific Reports, 3
  • [38] Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes
    Liu, Nian
    Huo, Kaifu
    McDowell, Matthew T.
    Zhao, Jie
    Cui, Yi
    SCIENTIFIC REPORTS, 2013, 3
  • [39] Electrochemical Characteristics of Nanostructured Silicon Anodes for Lithium-Ion Batteries
    Astrova, E. V.
    Li, G. V.
    Rumyantsev, A. M.
    Zhdanov, V. V.
    SEMICONDUCTORS, 2016, 50 (02) : 276 - 283
  • [40] Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries
    E. V. Astrova
    G. V. Li
    A. M. Rumyantsev
    V. V. Zhdanov
    Semiconductors, 2016, 50 : 276 - 283