Active Platinum Nanoparticles as a Bifunctional Promoter for Lithium-Sulfur Batteries

被引:27
|
作者
Lin, Zejing [1 ]
Li, Xia [1 ]
Huang, Wenlong [1 ]
Zhu, Xi [1 ]
Wang, Yun [2 ]
Shan, Zhongqiang [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300350, Peoples R China
[2] Natl Dev Ctr High Technol Green Mat, Beijing 100081, Peoples R China
来源
CHEMELECTROCHEM | 2017年 / 4卷 / 10期
关键词
chemisorption; electrocatalyst; kinetics; lithium-sulfur batteries; platinum; LI-S BATTERIES; CARBON NANOTUBES; IMPEDANCE SPECTROSCOPY; PERFORMANCE; CATHODE; POLYSULFIDES; CHEMISTRY; GRAPHENE; SHUTTLE; STORAGE;
D O I
10.1002/celc.201700533
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As a widely used electrocatalyst in fuel cells, metallic platinum has achieved great success in terms of kinetic promotion. Still plagued by a familiar problem, owing to the sluggish kinetics of irreversible Li2S2/Li2S species deposition, lithium-sulfur batteries with high theoretical energy are far from being realized. Inspired by the similarity between oxygen and sulfur, being in the same group, commercially available Pt/C was investigated here to explore the possible effect on the sulfur cathode. The electrochemical tests show that the electrode with 2wt% Pt added delivers a 61% enhancement in the discharging specific capacity compared to the control electrode after 200 cycles at 0.5C, along with an average coulombic efficiency of 98.3%. It is proven that these beneficial results can be attributed to the favorable capability of polysulfide immobilization and effective inhibition of self-discharging behavior. The ex situ XPS analysis and the increased exchange current density further reveal that the involved platinum nanoparticles could not only function as a static chemical absorber for polysulfide species, but, more importantly, to promote the redox kinetic effectively as an electrochemical catalyst. The positive effect of utilizing commercial Pt/C materials directly on sulfur cathodes is of great significance in developing sulfur cathodes for Li/S batteries.
引用
收藏
页码:2577 / 2582
页数:6
相关论文
共 50 条
  • [41] BUILDING LITHIUM-SULFUR BATTERIES THAT LAST
    Bourzac, Katherine
    CHEMICAL & ENGINEERING NEWS, 2013, 91 (49) : 11 - 11
  • [42] Permselective membranes in lithium-sulfur batteries
    Shaibani, Mahdokht
    Hollenkamp, Anthony F.
    Hill, Matthew R.
    Majumder, Mainak
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2017, 16 : 31 - 38
  • [43] Graphene materials for lithium-sulfur batteries
    Yu, Mingpeng
    Li, Rui
    Wu, Mingmao
    Shi, Gaoquan
    ENERGY STORAGE MATERIALS, 2015, 1 : 51 - 73
  • [44] Anodes for Rechargeable Lithium-Sulfur Batteries
    Cao, Ruiguo
    Xu, Wu
    Lv, Dongping
    Xiao, Jie
    Zhang, Ji-Guang
    ADVANCED ENERGY MATERIALS, 2015, 5 (16)
  • [45] Understanding the Electrolytes of Lithium-Sulfur Batteries
    Angulakshmi, N.
    Dhanalakshmi, R. Baby
    Sathya, S.
    Ahn, Jou-Hyeon
    Stephan, A. Manuel
    BATTERIES & SUPERCAPS, 2021, 4 (07) : 1064 - 1095
  • [46] Recent Progress of Lithium-Sulfur Batteries
    Xiao, Meijuan
    Xing, Zhenyu
    BATTERIES-BASEL, 2023, 9 (02):
  • [47] Application of MXenes in lithium-sulfur batteries
    HOU JiYue
    WANG Ying
    YANG WenHao
    WANG Fei
    YANG Dong
    ZHANG YiYong
    LIANG Feng
    LI Xue
    ZHANG YingJie
    ZHAO JinBao
    Science China(Technological Sciences), 2022, 65 (10) : 2259 - 2273
  • [48] Recent advances in lithium-sulfur batteries
    Chen, Lin
    Shaw, Leon L.
    JOURNAL OF POWER SOURCES, 2014, 267 : 770 - 783
  • [49] Lithium-Sulfur Batteries Last a Lifetime
    不详
    CHEMICAL ENGINEERING PROGRESS, 2014, 110 (02) : 6 - 6
  • [50] On the electrochemical properties of lithium-sulfur batteries
    Santos, Erick A.
    Fernandes, Rodolfo C.
    Vicentini, Rafael
    Aguiar, Joao Pedro
    Da Silva, Leonardo M.
    Zanin, Hudson
    JOURNAL OF ENERGY STORAGE, 2023, 71