Inhibition of Azotobacter vinelandii rhodanese by NO-donors

被引:5
|
作者
Spallarossa, A
Forlani, F
Pagani, S
Salvati, L
Visca, P
Ascenzi, P
Bolognesi, M
Bordo, D
机构
[1] Ist Nazl Ric Canc, I-16132 Genoa, Italy
[2] Univ Genoa, Dipartimento Sci Farmaceut, I-16132 Genoa, Italy
[3] Univ Milan, Dipartimento Sci Mol Agroaliment, I-20133 Milan, Italy
[4] Univ Roma Tre, Dipartimento Biol, I-00146 Rome, Italy
[5] IRCCS, Ist Nazl Malattie Infett Lazzaro Spallanzani, Unita Microbiol Mol, I-00149 Rome, Italy
[6] Univ Roma Tre, Lab Interdipartimentale Microscopia Electron, I-00146 Rome, Italy
[7] Univ Genoa, Dipartimento Fis, INFM, Ctr Eccellenza Biol Med, I-16146 Genoa, Italy
关键词
rhodanese; sulfurtransferase; phosphatase; NO-donors; enzyme inhibition;
D O I
10.1016/S0006-291X(03)01067-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nitric oxide (NO) is a versatile regulatory molecule that affects enzymatic activity through chemical modification of reactive amino acid residues (e.g., Cys and Tyr) and by binding to metal centers. In the present study, the inhibitory effect of the NO-donors S-nitroso-glutathione (GSNO), (+/-)E-4-ethyl-2-[E-hydroxyimino]-5-nitro-3-hexenamide (NOR-3), and S-nitroso-N-acetyl-penicillamine (SNAP) on the catalytic activity of Azotobacter vinelandii rhodanese (RhdA) has been investigated. GSNO, NOR-3, and SNAP inhibit RhdA sulfurtransferase activity in a concentration- and time-dependent fashion. The absorption spectrum of the NOR-3-treated RhdA displays a maximum at 335 run, indicating NO-mediated S-nitrosylation. RhdA inhibition by NO-donors correlates with S-nitrosothiol formation. The reducing agent dithiothreitol prevents RhdA inhibition by NO-donors, fully restores the catalytic activity, and reverts the NOR-3-induced RhdA absorption spectrum to that of the active enzyme. These results indicate that RhdA inhibition occurs via NO-mediated S-nitrosylation of the unique Cys230 catalytic residue. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:1002 / 1007
页数:6
相关论文
共 50 条
  • [31] EXTRACELLULAR POLYSACCHARIDES OF AZOTOBACTER VINELANDII
    COHEN, GH
    JOHNSTONE, DB
    JOURNAL OF BACTERIOLOGY, 1964, 88 (02) : 329 - &
  • [32] MULTIPLE CHROMOSOMES OF AZOTOBACTER VINELANDII
    PUNITA, SJ
    REDDY, MA
    DAS, HK
    JOURNAL OF BACTERIOLOGY, 1989, 171 (06) : 3133 - 3138
  • [33] The replication origin of Azotobacter vinelandii
    R. A. Singh
    N. R. Choudhury
    H. K. Das
    Molecular and General Genetics MGG, 2000, 262 : 1070 - 1080
  • [34] The replication origin of Azotobacter vinelandii
    Singh, RA
    Choudhury, NR
    Das, HK
    MOLECULAR AND GENERAL GENETICS, 2000, 262 (06): : 1070 - 1080
  • [35] Azotobacter vinelandii:: a Pseudomonas in disguise?
    Rediers, H
    Vanderleyden, J
    De Mot, R
    MICROBIOLOGY-SGM, 2004, 150 : 1117 - 1119
  • [36] β-Ketothiolase genes in Azotobacter vinelandii
    Segura, D
    Vargas, E
    Espín, G
    GENE, 2000, 260 (1-2) : 113 - 120
  • [37] ENZYME LOCALIZATION IN AZOTOBACTER VINELANDII
    ALEXANDER, M
    WILSON, PW
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1955, 41 (11) : 843 - 848
  • [38] Iron Homeostasis in Azotobacter vinelandii
    Rosa-Nunez, Elena
    Echavarri-Erasun, Carlos
    Armas, Alejandro M.
    Escudero, Viviana
    Poza-Carrion, Cesar
    Rubio, Luis M.
    Gonzalez-Guerrero, Manuel
    BIOLOGY-BASEL, 2023, 12 (11):
  • [39] GLUCOSE CATABOLISM IN AZOTOBACTER VINELANDII
    STILL, GG
    WANG, CH
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1964, 105 (01) : 126 - &
  • [40] CYTOCHROME SYSTEM OF AZOTOBACTER VINELANDII
    JONES, CW
    REDFEARN, ER
    BIOCHIMICA ET BIOPHYSICA ACTA, 1967, 143 (02) : 340 - &