A supernodal formulation of vertex colouring with applications in course timetabling

被引:40
|
作者
Burke, Edmund K. [2 ]
Marecek, Jakub [1 ,2 ]
Parkes, Andrew J. [2 ]
Rudova, Hana [1 ]
机构
[1] Masaryk Univ, Fac Informat, Brno 60200, Czech Republic
[2] Univ Nottingham, Automated Scheduling Optimisat & Planning Grp, Sch Comp Sci, Nottingham NG8 1BB, England
基金
英国工程与自然科学研究理事会;
关键词
Vertex colouring; Graph colouring; Multicolouring; Supernode; Module; Integer programming; GRAPH; ILP; DECOMPOSITION; COMPLEXITY; ALGORITHM; NUMBER;
D O I
10.1007/s10479-010-0716-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For many problems in scheduling and timetabling, the choice of a mathematical programming formulation is determined by the formulation of the graph colouring component. This paper briefly surveys seven known integer programming formulations of vertex colouring and introduces a new approach using "supernodes". In the definition of George and McIntyre (SIAM J. Numer. Anal. 15(1):90-112, 1978), a "supernode" is a complete subgraph, within which every pair of vertices have the same neighbourhood outside of the subgraph. A polynomial-time algorithm for obtaining the best possible partition of an arbitrary graph into supernodes is given. This makes it possible to use any formulation of vertex multicolouring to encode vertex colouring. Results of empirical tests on benchmark instances in graph colouring (DIMACS) and timetabling (Udine Course Timetabling) are also provided and discussed.
引用
收藏
页码:105 / 130
页数:26
相关论文
共 50 条
  • [31] Generalizing bipartite edge colouring to solve real instances of the timetabling problem
    Abraham, DJ
    Kingston, JH
    PRACTICE AND THEORY OF AUTOMATED TIMETABLING IV, 2003, 2740 : 288 - 298
  • [32] On the Complexity of Rainbow Vertex Colouring Diametral Path Graphs
    Dyrseth, Jakob
    Lima, Paloma T.
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 248
  • [33] A LAGRANGEAN RELAXATION APPROACH TO COURSE TIMETABLING
    TRIPATHY, A
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1980, 31 (07) : 599 - 603
  • [34] Minimal perturbation problem in course timetabling
    Müller, T
    Rudová, H
    Barták, R
    PRACTICE AND THEORY OF AUTOMATED TIMETABLING V, 2005, 3616 : 126 - 146
  • [35] Solution approaches to the course timetabling problem
    S. A. MirHassani
    F. Habibi
    Artificial Intelligence Review, 2013, 39 : 133 - 149
  • [36] A Hybrid Approach for University Course Timetabling
    Abdullah, Salwani
    Hamdan, Abdul Razak
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (08): : 127 - 131
  • [37] An artificial intelligence approach to course timetabling
    Lai, Lien F.
    Wu, Chao-Chin
    Hsueh, Nien-Lin
    Huang, Liang-Tsung
    Hwang, Shiow-Fen
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2008, 17 (01) : 223 - 240
  • [38] Solution approaches to the course timetabling problem
    MirHassani, S. A.
    Habibi, F.
    ARTIFICIAL INTELLIGENCE REVIEW, 2013, 39 (02) : 133 - 149
  • [39] Adaptive Tabu Search for course timetabling
    Lue, Zhipeng
    Hao, Jin-Kao
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 200 (01) : 235 - 244
  • [40] Automated Timetabling System for University Course
    Rane, Mrunmayee, V
    Apte, Vikram M.
    Nerkar, Vishakha N.
    Edinburgh, Mani Roja
    Rajput, K. Y.
    2021 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2021, : 328 - 334