A supernodal formulation of vertex colouring with applications in course timetabling

被引:40
|
作者
Burke, Edmund K. [2 ]
Marecek, Jakub [1 ,2 ]
Parkes, Andrew J. [2 ]
Rudova, Hana [1 ]
机构
[1] Masaryk Univ, Fac Informat, Brno 60200, Czech Republic
[2] Univ Nottingham, Automated Scheduling Optimisat & Planning Grp, Sch Comp Sci, Nottingham NG8 1BB, England
基金
英国工程与自然科学研究理事会;
关键词
Vertex colouring; Graph colouring; Multicolouring; Supernode; Module; Integer programming; GRAPH; ILP; DECOMPOSITION; COMPLEXITY; ALGORITHM; NUMBER;
D O I
10.1007/s10479-010-0716-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For many problems in scheduling and timetabling, the choice of a mathematical programming formulation is determined by the formulation of the graph colouring component. This paper briefly surveys seven known integer programming formulations of vertex colouring and introduces a new approach using "supernodes". In the definition of George and McIntyre (SIAM J. Numer. Anal. 15(1):90-112, 1978), a "supernode" is a complete subgraph, within which every pair of vertices have the same neighbourhood outside of the subgraph. A polynomial-time algorithm for obtaining the best possible partition of an arbitrary graph into supernodes is given. This makes it possible to use any formulation of vertex multicolouring to encode vertex colouring. Results of empirical tests on benchmark instances in graph colouring (DIMACS) and timetabling (Udine Course Timetabling) are also provided and discussed.
引用
收藏
页码:105 / 130
页数:26
相关论文
共 50 条
  • [1] A supernodal formulation of vertex colouring with applications in course timetabling
    Edmund K. Burke
    Jakub Mareček
    Andrew J. Parkes
    Hana Rudová
    Annals of Operations Research, 2010, 179 : 105 - 130
  • [2] A note on vertex list colouring
    Haxell, PE
    COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (04): : 345 - 347
  • [3] Vertex colouring edge partitions
    Addario-Berry, L
    Aldred, REL
    Dalal, K
    Reed, BA
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (02) : 237 - 244
  • [4] Daily course pattern formulation and valid inequalities for the curriculum-based course timetabling problem
    Bagger, Niels-Christian Fink
    Desaulniers, Guy
    Desrosiers, Jacques
    JOURNAL OF SCHEDULING, 2019, 22 (02) : 155 - 172
  • [5] Daily course pattern formulation and valid inequalities for the curriculum-based course timetabling problem
    Niels-Christian Fink Bagger
    Guy Desaulniers
    Jacques Desrosiers
    Journal of Scheduling, 2019, 22 : 155 - 172
  • [6] Parameterized complexity of vertex colouring
    Cai, LZ
    DISCRETE APPLIED MATHEMATICS, 2003, 127 (03) : 415 - 429
  • [7] An Analysis of Heuristics for Vertex Colouring
    Chiarandini, Marco
    Stutzle, Thomas
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2010, 6049 : 326 - +
  • [8] Dantzig-Wolfe decomposition of the daily course pattern formulation for curriculum-based course timetabling
    Bagger, Niels-Christian F.
    Sorensen, Matias
    Stidsen, Thomas R.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 272 (02) : 430 - 446
  • [9] A Grouping Genetic Algorithm for graph colouring and exam timetabling
    Erben, W
    PRACTICE AND THEORY OF AUTOMATED TIMETABLING III, 2001, 2079 : 132 - 156
  • [10] Vertex colouring using the adjacency matrix
    Santoso, K. A.
    Dafik
    Agustin, I. H.
    Prihandini, R. M.
    Alfarisi, R.
    2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,