Determination of flow regimes from raw capacitance tomography data using neural networks

被引:0
|
作者
Yan, H [1 ]
Liu, CT [1 ]
Liu, YH [1 ]
机构
[1] Shenyang Univ Technol, Sch Informat Sci & Engn, Shenyang 110023, Peoples R China
关键词
electrical capacitance tomography; flow-regime identification; back-propagation network; feature parameter extraction;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An application of electrical capacitance tomography for two-component flow identification without the need for time-consuming image reconstruction and analysis is presented 10 feature parameters are extracted straight from the capacitance measurements and translated into regime information via a back-propagation (BP) network. The extraction of feature parameters, the architecture and the training of the BP network are give. Simulation results show that the new identification method has good precision and fast speed The use of feature parameters and the BP network for flow-regime identification is promising.
引用
收藏
页码:2313 / 2317
页数:5
相关论文
共 50 条
  • [41] A novel algorithm to detect non-wear time from raw accelerometer data using deep convolutional neural networks
    Syed, Shaheen
    Morseth, Bente
    Hopstock, Laila A.
    Horsch, Alexander
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [42] A novel algorithm to detect non-wear time from raw accelerometer data using deep convolutional neural networks
    Shaheen Syed
    Bente Morseth
    Laila A. Hopstock
    Alexander Horsch
    Scientific Reports, 11
  • [43] Analysis and interpretation of hopper flow behaviour using electrical capacitance tomography
    Romanowski, Andrzej
    Grudzien, Krzysztof
    Williams, Richard A.
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2006, 23 (3-4) : 297 - 305
  • [44] Direct flow-pattern identification using electrical capacitance tomography
    Jeanmeure, LFC
    Dyakowski, T
    Zimmerman, WBJ
    Clark, W
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2002, 26 (6-7) : 763 - 773
  • [45] Imaging of fluidized bed flow patterns using Electrical Capacitance Tomography
    Wang, SJ
    Dyakowski, T
    1997 JUBILEE RESEARCH EVENT, VOLS 1 AND 2, 1997, : 481 - 484
  • [46] Dynamic Visualization Approach of the Multiphase Flow Using Electrical Capacitance Tomography
    Wang Zepu
    Chen Qi
    Wang Xueyao
    Li Zhihong
    Han Zhenxing
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2012, 20 (02) : 380 - 388
  • [47] Measurement and Characterization of Fluid Flow Profile using Electrical Capacitance Tomography
    Abegaz, Brook W.
    Dick, Nathan T.
    Mahajan, Satish M.
    IEEE SOUTHEASTCON 2014, 2014,
  • [48] Knowledge Extraction from Survey Data Using Neural Networks
    Khan, Imran
    Kulkarni, Arun
    COMPLEX ADAPTIVE SYSTEMS: EMERGING TECHNOLOGIES FOR EVOLVING SYSTEMS: SOCIO-TECHNICAL, CYBER AND BIG DATA, 2013, 20 : 433 - 438
  • [49] Classification and prediction of traffic flow based on real data using neural networks
    Pamula, T. (teresa.pamula@polsl.pl), 1600, De Gruyter Open Ltd (24):
  • [50] Reconstruction of permittivity images from capacitance tomography data by using very fast simulated annealing
    Ortiz-Aleman, C
    Martin, R
    Gamio, JC
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2004, 15 (07) : 1382 - 1390