Density-matrix renormalization-group algorithms with nonorthogonal orbitals and non-Hermitian operators, and applications to polyenes

被引:59
|
作者
Chan, GKL [1 ]
Van Voorhis, T
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2005年 / 122卷 / 20期
关键词
D O I
10.1063/1.1899124
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe the theory and implementation of two extensions to the density-matrix renormalization-group (DMRG) algorithm in quantum chemistry: (i) to work with an underlying nonorthogonal one-particle basis (using a biorthogonal formulation) and (ii) to use non-Hermitian and complex operators and complex wave functions, which occur naturally in biorthogonal formulations. Using these developments, we carry out ground-state calculations on ethene, butadiene, and hexatriene, in a polarized atomic-orbital basis. The description of correlation in these systems using a localized nonorthogonal basis is improved over molecular-orbital DMRG calculations, and comparable to or better than coupled-cluster calculations, although we encountered numerical problems associated with non-Hermiticity. We believe that the non-Hermitian DMRG algorithm may further become useful in conjunction with other non-Hermitian Hamiltonians, for example, similarity-transformed coupled-cluster Hamiltonians. (c) 2005 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] DENSITY-MATRIX RENORMALIZATION-GROUP STUDIES OF THE ALTERNATING HUBBARD-MODEL
    PANG, HB
    LIANG, SD
    PHYSICAL REVIEW B, 1995, 51 (16): : 10287 - 10292
  • [22] Power laws in Ising strips: Density-matrix renormalization-group calculations
    Drzewinski, A
    Sznajd, J
    Szota, K
    PHYSICAL REVIEW B, 2005, 72 (01):
  • [23] Interaction-round-a-face density-matrix renormalization-group method
    Wada, T
    Nishino, T
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 142 (1-3) : 164 - 167
  • [24] Incommensurate structures studied by a modified density-matrix renormalization-group method
    Gendiar, A
    Surda, A
    PHYSICAL REVIEW B, 2000, 62 (06): : 3960 - 3967
  • [25] Density-matrix renormalization-group study of the polaron problem in the Holstein model
    Jeckelmann, E
    White, SR
    PHYSICAL REVIEW B, 1998, 57 (11): : 6376 - 6385
  • [26] Marshall's sign rule and density-matrix renormalization-group acceleration
    Schollwock, U
    PHYSICAL REVIEW B, 1998, 58 (13): : 8194 - 8197
  • [27] Symmetrized density-matrix renormalization-group method for excited states of Hubbard models
    Ramasesha, S
    Pati, SK
    Krishnamurthy, HR
    Shuai, Z
    Bredas, JL
    PHYSICAL REVIEW B, 1996, 54 (11): : 7598 - 7601
  • [28] Magnetic impurity coupled to a Heisenberg chain: Density-matrix renormalization-group study
    Zhang, W
    Igarashi, J
    Fulde, P
    PHYSICAL REVIEW B, 1997, 56 (02) : 654 - 660
  • [29] REAL-SPACE DENSITY-MATRIX RENORMALIZATION-GROUP STUDY OF THE KONDO NECKLACE
    MOUKOURI, S
    CARON, LG
    BOURBONNAIS, C
    HUBERT, L
    PHYSICAL REVIEW B, 1995, 51 (22) : 15920 - 15924
  • [30] Density-matrix renormalization-group study of one-dimensional acoustic phonons
    Caron, LG
    Moukouri, S
    PHYSICAL REVIEW B, 1997, 56 (14) : R8471 - R8474