Three dimensional printed nanostructure biomaterials for bone tissue engineering

被引:60
|
作者
Marew, Tesfa [1 ]
Birhanu, Gebremariam [1 ]
机构
[1] Addis Ababa Univ, Coll Hlth Sci, Sch Pharm, Dept Pharmaceut & Social Pharm, Addis Ababa, Ethiopia
来源
REGENERATIVE THERAPY | 2021年 / 18卷
关键词
Biomaterials; Bone tissue engineering; Nanofiber scaffolds; Three dimensional printing; Nanohydroxyapitite; COMPOSITE SCAFFOLDS; STEM-CELLS; OSTEOGENIC DIFFERENTIATION; POROUS BIOMATERIALS; PHOSPHATE SCAFFOLDS; CALCIUM PHOSPHATES; CERAMIC SCAFFOLDS; DRUG-DELIVERY; PORE-SIZE; IN-VIVO;
D O I
10.1016/j.reth.2021.05.001
中图分类号
Q813 [细胞工程];
学科分类号
摘要
The suffering from organ dysfunction due to damaged or diseased tissue/bone has been globally on the rise. Current treatment strategies for non-union bone defects include: the use of autografts, allografts, synthetic grafts and free vascularized fibular grafts. Bone tissue engineering has emerged as an alternative for fracture repair to satisfy the current unmet need of bone grafts and to alleviate the problems associated with autografts and allografts. The technology offers the possibility to induce new functional bone regeneration using synergistic combination of functional biomaterials (scaffolds), cells, and growth factors. Bone scaffolds are typically made of porous biodegradable materials that provide the mechanical support during repair and regeneration of damaged or diseased bone. Significant progress has been made towards scaffold materials for structural support, desired osteogenesis and angiogenesis abilities. Thanks for innovative scaffolds fabrication technologies, bioresorbable scaffolds with controlled porosity and tailored properties are possible today. Despite the presence of different bone scaffold fabrication methods, pore size, shape and interconnectivity have not yet been fully controlled in most of the methods. Moreover, scaffolds with tailored porosity for specific defects are still difficult to manufacture. Nevertheless, such scaffolds can be designed and fabricated using three dimensional (3D) printing approaches. 3D printing technology, as an advanced tissue scaffold fabrication method, offers the opportunity to produce complex geometries with distinct advantages. The technology has been used for the production of various types of bodily constructs such as blood vessels, vascular networks, bones, cartilages, exoskeletons, eyeglasses, cell cultures, tissues, organs and novel drug delivery devices. This review focuses on 3D printed scaffolds and their application in bone repair and regeneration. In addition, different classes of biomaterials commonly employed for the fabrication of 3D nano scaffolds for bone tissue engineering application so far are briefly discussed. (C) 2021, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.
引用
收藏
页码:102 / 111
页数:10
相关论文
共 50 条
  • [41] Piezoelectric smart biomaterials for bone and cartilage tissue engineering
    Jaicy Jacob
    Namdev More
    Kiran Kalia
    Govinda Kapusetti
    Inflammation and Regeneration, 38
  • [42] Elaboration of optimized ceramic biomaterials for bone tissue engineering
    Magnaudeix, Amandine
    Usseglio-Grosso, Julie
    MEMOIRES IDENTITES MARGINALITES DANS LE MONDE OCCIDENTAL CONTEMPORAIN, 2021, 26
  • [43] Three-dimensional printed tissue engineered bone for canine mandibular defects
    Zhang, Li
    Tang, Junling
    Sun, Libo
    Zheng, Ting
    Pu, Xianzhi
    Chen, Yue
    Yang, Kai
    GENES & DISEASES, 2020, 7 (01) : 138 - 149
  • [44] Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering
    Vyas, Veena
    Kaur, Tejinder
    Thirugnanam, Arunachalam
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 104 : 1946 - 1954
  • [45] Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone
    Garreta, E.
    Gasset, D.
    Semino, C.
    Borros, S.
    BIOMOLECULAR ENGINEERING, 2007, 24 (01): : 75 - 80
  • [46] Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering
    Lin, Weimin
    Chen, Miao
    Qu, Tao
    Li, Jidong
    Man, Yi
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2020, 108 (04) : 1311 - 1321
  • [47] Three-dimensional macroporous materials for tissue engineering of craniofacial bone
    Shakya, Akhilesh Kumar
    Kandalam, Umadevi
    BRITISH JOURNAL OF ORAL & MAXILLOFACIAL SURGERY, 2017, 55 (09): : 875 - 891
  • [48] Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering
    Fernandes, Margarida M.
    Correia, Daniela M.
    Ribeiro, Clarisse
    Castro, Nelson
    Correia, Vitor
    Lanceros-Mendez, Senentxu
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (48) : 45265 - 45275
  • [49] Three dimensional macroporous calcium phosphate scaffolds for bone tissue engineering
    Teixeira, S.
    Oliveira, S.
    Ferraz, M. P.
    Monteiro, F. J.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 947 - +
  • [50] Two-Dimensional Nanostructure-Reinforced Biodegradable Polymeric Nanocomposites for Bone Tissue Engineering
    Lalwani, Gaurav
    Henslee, Allan M.
    Farshid, Behzad
    Lin, Liangjun
    Kasper, F. Kurtis
    Qin, Yi-Xian
    Mikos, Antonios G.
    Sitharaman, Balaji
    BIOMACROMOLECULES, 2013, 14 (03) : 900 - 909