Design of LiFePO4 and porous carbon composites with excellent High-Rate charging performance for Lithium-Ion secondary battery

被引:49
|
作者
Huang, Chen-Yi [1 ]
Kuo, Tsung-Rong [2 ,3 ]
Yougbare, Sibidou [4 ]
Lin, Lu-Yin [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Chem Engn & Biotechnol, Taipei, Taiwan
[2] Taipei Med Univ, Coll Biomed Engn, Int PhD Program Biomed Engn, Taipei 11031, Taiwan
[3] Taipei Med Univ, Coll Biomed Engn, Grad Inst Nanomed & Med Engn, Taipei 11031, Taiwan
[4] Inst Rech Sci Sante IRSS DRCO Nanoro, 03 BP 7192, Ouagadougou 03, Burkina Faso
关键词
Carbon coating; High-rate; Lithium iron phosphate; Lithium ion battery; Mechanofusion; Super P (R); CATHODE MATERIAL; COATED LIFEPO4; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; IRON PHOSPHATE; PARTICLE-SIZE; IMPROVEMENT; MORPHOLOGY;
D O I
10.1016/j.jcis.2021.09.118
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium iron phosphate (LFP) is one of the promising cathode materials of lithium ion battery (LIB), but poor electrical conductivity restricts its electrochemical performance. Carbon coating can improve electrical conductivity of LFP without changing its intrinsic property. Uniform coating of carbon on LFP is significant to avoid charge congregation and unpreferable redox reactions. It is the first time to apply the commercial organic binder, Super P (R) (SP), as carbon source to achieve uniform coating on LFP as cathode material of LIB. The simple and economical mechanofusion method is firstly applied to coat different amounts of SP on LFP. The LIB with the cathode material of optimized SP-coated LFP shows the highest capacity of 165.6 mAh/g at 0.1C and 59.8 mAh/g at 10C, indicating its high capacity and excellent high rate charge/discharge capability. SP is applied on other commercial LFP materials, M121 and M23, for carbon coating. Enhanced high-rate charge/discharge capabilities are also achieved for LIB with SP-coated M121 and M23 as cathode materials. This new material and technique for carbon coating is verified to be applicable on different LFP materials. This novel carbon coating method is expected to apply on other cathode materials of LIB with outstanding electrochemical performances. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:1457 / 1465
页数:9
相关论文
共 50 条
  • [41] An inexpensive preparation of unique nano-micro porous LiFePO4 cathode with excellent rate capability for lithium-ion batteries
    Pan, Xiaoxiao
    Sun, Yuqing
    Zhuang, Shuxin
    Sun, Gaoxing
    Jiang, Shengyu
    Ren, Yan
    Wen, Yanfen
    Li, Xiaodan
    Tu, Feiyue
    VACUUM, 2023, 212
  • [42] Synthesis of LiFePO4/C cathode material for lithium-ion battery
    Tong Hui
    Hu Guo-Hua
    Hu Guo-Rong
    Peng Zhong-Dong
    Zhang Xin-Long
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2006, 22 (12) : 2159 - 2164
  • [43] Glass-ceramic LiFePO4 for lithium-ion rechargeable battery
    Nagakane, T.
    Yamauchi, H.
    Yuki, K.
    Ohji, M.
    Sakamoto, A.
    Komatsu, T.
    Honma, T.
    Zou, M.
    Park, G.
    Sakai, T.
    SOLID STATE IONICS, 2012, 206 : 78 - 83
  • [44] Tannic Acid-Derived Carbon Coating on LiFePO4 Nanocrystals Enables High-Rate Cathode Materials for Lithium-Ion Batteries
    Wang, Yanzhuang
    Cui, Cong
    Cheng, Renfei
    Wang, Junchao
    Wang, Xiaohui
    ACS APPLIED NANO MATERIALS, 2023, 6 (11) : 9124 - 9129
  • [45] Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery
    Forgez, Christophe
    Do, Dinh Vinh
    Friedrich, Guy
    Morcrette, Mathieu
    Delacourt, Charles
    JOURNAL OF POWER SOURCES, 2010, 195 (09) : 2961 - 2968
  • [46] Hierarchically porous MXene decorated carbon coated LiFePO4 as cathode material for high-performance lithium-ion batteries
    Zhang, Hongwei
    Li, Jiayi
    Luo, Linqu
    Zhao, Jie
    He, Junyu
    Zhao, Xiaoxian
    Liu, Hao
    Qin, Yuanbin
    Wang, Fengyun
    Song, Jianjun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 876
  • [47] Float Charging Performance of Lithium Ion Batteries with LiFePO4 Cathode
    Takahashi, Masaya
    Shodai, Takahisa
    ELECTROCHEMISTRY, 2010, 78 (05) : 342 - 344
  • [48] Effects of yttrium ion doping on electrochemical performance of LiFePO4/C cathodes for lithium-ion battery
    Chen, Junming
    Wang, Xuchun
    Ma, Zhipeng
    Shao, Guangjie
    IONICS, 2015, 21 (10) : 2701 - 2708
  • [49] Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries
    Konarova, Muxina
    Taniguchi, Izumi
    JOURNAL OF POWER SOURCES, 2010, 195 (11) : 3661 - 3667
  • [50] Effects of yttrium ion doping on electrochemical performance of LiFePO4/C cathodes for lithium-ion battery
    Junming Chen
    Xuchun Wang
    Zhipeng Ma
    Guangjie Shao
    Ionics, 2015, 21 : 2701 - 2708