Data-driven short-term natural gas demand forecasting with machine learning techniques

被引:19
|
作者
Sharma, Vinayak [1 ]
Cali, Umit [2 ]
Sardana, Bhav [5 ]
Kuzlu, Murat [3 ]
Banga, Dishant [6 ]
Pipattanasomporn, Manisa [4 ]
机构
[1] Univ North Carolina Charlotte, Dept Elect & Comp Engn, Charlotte, NC 28223 USA
[2] Norwegian Univ Sci & Technol, Dept Elect Power Engn, Trondheim, Norway
[3] Old Dominion Univ, Dept Engn Technol, Norfolk, VA USA
[4] Chulalongkorn Univ, Smart Grid Res Unit, Bangkok, Thailand
[5] Univ North Carolina Charlotte, Dept Appl Energy & Electromech Engn, Charlotte, NC USA
[6] Univ North Carolina Charlotte, Dept Syst Engn, Charlotte, NC USA
关键词
Natural gas forecasting; Artificial neural networks; Conjugate gradient; Gradient boosting; Machine learning; Natural gas supply chain; CONSUMPTION; NETWORK; PREDICTION; SYSTEM; MODEL;
D O I
10.1016/j.petrol.2021.108979
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Natural gas demand forecasting is one of the most crucial steps in the proper planning and operation of natural gas supply systems. The demand and supply of natural gas must be balanced at all times.Large error in forecasts of natural gas demand can cost Local Distribution Companies (LDCs) millions of dollars. In this study, techniques for accurate forecasting of natural gas demand are examined. The models are tested and validated on real data from nPower forecasting competition 2018, which consists of historical natural gas consumption and the corresponding weather forecast at 6-h intervals. The methodology presents a holistic approach that includes data pre-processing, feature engineering, feature selection, model development, and post-processing. To capture the intra-day variability in natural gas demand a block-wise approach is used to develop the forecasting models. In this approach, a separate model is developed for each block of the day. Subsequently, four different forecasting models are developed using the block-wise technique, namely, a block-wise gradient boosting model using features from sensitivity analysis (GB), a block-wise gradient boosting model using features from PCA (GB-PCA), a block-wise ANN-CG model using features from sensitivity analysis (ANN-CG) and a block-wise ANN-CG model using features from PCA (ANN-CG-PCA). Three hybrid forecasts are also developed by combining the forecasts from the four individual models. The results show that the combined models outperform the individual models, with an improvement of around 15% in terms of Mean Absolute Percentage Error (MAPE).
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Data-Driven Short-Term Solar Irradiance Forecasting Based on Information of Neighboring Sites
    Huang, Chao
    Wang, Long
    Lai, Loi Lei
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (12) : 9918 - 9927
  • [42] Short-term scenario-based probabilistic load forecasting: A data-driven approach
    Khoshrou, Abdolrahman
    Pauwels, Eric J.
    APPLIED ENERGY, 2019, 238 : 1258 - 1268
  • [43] A Data-Driven Short-Term PV Generation and Load Forecasting Approach for Microgrid Applications
    Trivedi, Rohit
    Patra, Sandipan
    Khadem, Shafi
    IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3 (04): : 911 - 919
  • [44] A High-Frequency Data-Driven Machine Learning Approach for Demand Forecasting in Smart Cities
    Carlos Preciado, Juan
    Prieto, Alvaro E.
    Benitez, Rafael
    Rodriguez-Echeverria, Roberto
    Maria Conejero, Jose
    SCIENTIFIC PROGRAMMING, 2019, 2019
  • [45] Short-Term Electricity Load Forecasting with Machine Learning
    Madrid, Ernesto Aguilar
    Antonio, Nuno
    INFORMATION, 2021, 12 (02) : 1 - 21
  • [46] Ensembling methods for countrywide short-term forecasting of gas demand
    Marziali, Andrea
    Fabbiani, Emanuele
    De Nicolao, Giuseppe
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2021, 26 (02) : 184 - 201
  • [47] A Deep Learning Approach for Short-Term Electricity Demand Forecasting: Analysis of Thailand Data
    Shiwakoti, Ranju Kumari
    Charoenlarpnopparut, Chalie
    Chapagain, Kamal
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [48] Short-term natural gas consumption forecasting from long-term data collection
    Svoboda, Radek
    Kotik, Vojtech
    Platos, Jan
    ENERGY, 2021, 218
  • [49] Short-Term Forecasting of Household Water Demand in the UK Using an Interpretable Machine Learning Approach
    Xenochristou, Maria
    Hutton, Chris
    Hofman, Jan
    Kapelan, Zoran
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2021, 147 (04)
  • [50] Data-Driven Load Forecasting Using Machine Learning and Meteorological Data
    Alrashidi A.
    Qamar A.M.
    Computer Systems Science and Engineering, 2023, 44 (03): : 1973 - 1988