Clustering multispectral images: a tutorial

被引:61
|
作者
Tran, TN [1 ]
Wehrens, R [1 ]
Buydens, LMC [1 ]
机构
[1] Univ Nijmegen, Analyt Chem Lab, NSRIM Res Sch, NL-6525 ED Nijmegen, Netherlands
关键词
pattern recognition; unsupervised classification;
D O I
10.1016/j.chemolab.2004.07.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A huge number of clustering methods have been applied to many different kinds of data set including multivariate images, such as magnetic resonance images (MRI) and remote sensing images. However, not many methods include spatial information of the image data. In this tutorial, the major types of clustering techniques are summarized. Particular attention will be devoted to the extension of clustering techniques to take into account both spectral and spatial information of the multivariate image data. General guidelines for the optimal use of these algorithms are given. The application of pre- and post-processing methods is also discussed. (c) 2004 Elsevier B.V All rights reserved.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 50 条
  • [21] A tutorial on spectral clustering
    von Luxburg, Ulrike
    STATISTICS AND COMPUTING, 2007, 17 (04) : 395 - 416
  • [22] A Fuzzy-Statistics-Based Affinity Propagation Technique for Clustering in Multispectral Images
    Yang, Chen
    Bruzzone, Lorenzo
    Sun, Fengyue
    Lu, Laijun
    Guan, Renchu
    Liang, Yanchun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (06): : 2647 - 2659
  • [23] Multispectral Images Segmentation using Fuzzy Probabilistic Local Cluster for unsupervised clustering
    Luis Mantilla, S. C.
    Yari, Yessenia
    2017 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2017,
  • [24] Multispectral remote sensing images optimization hierarchical clustering based on markov random field
    Liu, Xiao-Yun
    Chen, Wu-Fan
    Wang, Zhen-Song
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2007, 36 (04): : 400 - 405
  • [25] Automatic band selection in multispectral images using mutual information-based clustering
    Martinez-Uso, Adolfo
    Pla, Filiberto
    Garcia-Sevilla, Pedro
    Sotoca, J. M.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2006, 4225 : 644 - 654
  • [26] K-means clustering for multispectral images using floating-point divide
    Wang, Xiaojun
    Leeser, Miriam
    FCCM 2007: 15TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2007, : 151 - +
  • [27] Dimensionality Reduction techniques: An operational comparison on multispectral satellite images using unsupervised clustering
    Journaux, Ludovic
    Tizon, Xavier
    Foucherot, Irene
    Gouton, Pierre
    2006 7TH NORDIC SIGNAL PROCESSING SYMPOSIUM, 2006, : 242 - +
  • [28] LOW-LEVEL SEGMENTATION OF MULTISPECTRAL IMAGES VIA AGGLOMERATIVE CLUSTERING OF UNIFORM NEIGHBORHOODS
    AMADASUN, M
    KING, RA
    PATTERN RECOGNITION, 1988, 21 (03) : 261 - 268
  • [29] A Simple and Effective Clustering Algorithm for Multispectral Images Using Space-Filling Curves
    Zhang, Jian
    Kamata, Sei-ichiro
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2012, E95D (07) : 1749 - 1757
  • [30] Robust optimal fuzzy clustering algorithm applicable to multispectral and polarimetric synthetic aperture radar images
    Chitroub, S
    Houacine, A
    Sansal, B
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING V, 1999, 3871 : 325 - 336