Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life

被引:68
|
作者
Jiang, Jehn-Ruey [1 ]
Lee, Juei-En [1 ]
Zeng, Yi-Ming [1 ]
机构
[1] Natl Cent Univ, Dept Comp Sci & Informat Engn, Taoyuan 32001, Taiwan
关键词
bearing; convolutional neural network; deep learning; long short-term memory; remaining useful life; time series; FAULT-DETECTION; HEALTH MANAGEMENT; MACHINE; PCA; DEGRADATION; PROGNOSTICS; DIAGNOSIS;
D O I
10.3390/s20010166
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper proposes two deep learning methods for remaining useful life (RUL) prediction of bearings. The methods have the advantageous end-to-end property that they take raw data as input and generate the predicted RUL directly. They are TSMC-CNN, which stands for the time series multiple channel convolutional neural network, and TSMC-CNN-ALSTM, which stands for the TSMC-CNN integrated with the attention-based long short-term memory (ALSTM) network. The proposed methods divide a time series into multiple channels and take advantage of the convolutional neural network (CNN), the long short-term memory (LSTM) network, and the attention-based mechanism for boosting performance. The CNN performs well for extracting features from data with multiple channels; dividing a time series into multiple channels helps the CNN extract relationship among far-apart data points. The LSTM network is excellent for processing temporal data; the attention-based mechanism allows the LSTM network to focus on different features at different time steps for better prediction accuracy. PRONOSTIA bearing operation datasets are applied to the proposed methods for the purpose of performance evaluation and comparison. The comparison results show that the proposed methods outperform the others in terms of the mean absolute error (MAE) and the root mean squared error (RMSE) of RUL prediction.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Short-Term Traffic Congestion Forecasting Using Attention-Based Long Short-Term Memory Recurrent Neural Network
    Zhang, Tianlin
    Liu, Ying
    Cui, Zhenyu
    Leng, Jiaxu
    Xie, Weihong
    Zhang, Liang
    COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 304 - 314
  • [32] Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks
    Liu, Jiawei
    Li, Qi
    Chen, Weirong
    Yan, Yu
    Qiu, Yibin
    Cao, Taiqiong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (11) : 5470 - 5480
  • [33] Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
    Xiong, Shanwei
    Zhou, Li
    Dai, Yiyang
    Ji, Xu
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 56 : 1 - 14
  • [34] Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
    Shanwei Xiong
    Li Zhou
    Yiyang Dai
    Xu Ji
    Chinese Journal of Chemical Engineering, 2023, 56 (04) : 1 - 14
  • [35] Long Short-Term Memory Neural Network with Transfer Learning and Ensemble Learning for Remaining Useful Life Prediction
    Wang, Lixiong
    Liu, Hanjie
    Pan, Zhen
    Fan, Dian
    Zhou, Ciming
    Wang, Zhigang
    SENSORS, 2022, 22 (15)
  • [36] Towards Attention-Based Convolutional Long Short-Term Memory for Travel Time Prediction of Bus Journeys
    Wu, Jianqing
    Wu, Qiang
    Shen, Jun
    Cai, Chen
    SENSORS, 2020, 20 (12) : 1 - 13
  • [37] Bearing life prediction method based on convolutional attention long-short term memory network
    Zhou J.-M.
    Gao S.
    Li J.-H.
    Xiong W.-H.
    Wang Y.-Q.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2023, 40 (06): : 1140 - 1148
  • [38] Real-Time Bearing Remaining Useful Life Estimation Based on the Frozen Convolutional and Activated Memory Neural Network
    Chen, Zesheng
    Tu, Xiaotong
    Hu, Yue
    Li, Fucai
    IEEE ACCESS, 2019, 7 : 96583 - 96593
  • [39] Hybrid attention-based Long Short-Term Memory network for sarcasm identification
    Pandey, Rajnish
    Kumar, Abhinav
    Singh, Jyoti Prakash
    Tripathi, Sudhakar
    APPLIED SOFT COMPUTING, 2021, 106
  • [40] Remaining useful life prediction of lithium-ion batteries based on attention mechanism and bidirectional long short-term memory network
    Zhang, Zhen
    Zhang, Wentao
    Yang, Kuo
    Zhang, Shujing
    FRONTIERS IN IMMUNOLOGY, 2021, 12