Two dimensional time-series for anomaly detection and regulation in adaptive systems

被引:0
|
作者
Burgess, M [1 ]
机构
[1] Oslo Univ Coll, Fac Engn, N-0254 Oslo, Norway
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A two dimensional time approach is introduced in order to classify a periodic, adaptive threshold for service level anomaly detection. An iterative algorithm is applied to history analysis on this periodic time to provide a the smooth roll-off in the significance of the data with time. The algorithm described leads to an approximately ten-fold compression in data storage, and thousand fold improvement in computation cycles, compared to a naive time-series approach. The behaviour of this anomaly detector is discussed, and the result is implemented in cfengine for direct use in system management.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 50 条
  • [31] Contrastive time-series reconstruction method for satellite anomaly detection
    Li, Zhenyu
    Song, Yuchen
    Peng, Xiyuan
    Liu, Datong
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2024, 45 (04): : 17 - 26
  • [32] DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems
    Stehle, Franz Kevin
    Vandelli, Wainer
    Avolio, Giuseppe
    Zahn, Felix
    Froening, Holger
    PROCEEDINGS OF THE 38TH ACM INTERNATIONAL CONFERENCE ON SUPERCOMPUTING, ACM ICS 2024, 2024, : 272 - 285
  • [33] Anomaly Detection in Industrial Multivariate Time-Series Data With Neutrosophic Theory
    Liu, Peng
    Han, Qilong
    Wu, Ting
    Tao, Wenjian
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13458 - 13473
  • [34] FluxEV: A Fast and Effective Unsupervised Framework for Time-Series Anomaly Detection
    Li, Jia
    Di, Shimin
    Shen, Yanyan
    Chen, Lei
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 824 - 832
  • [35] Multivariate Time-series Anomaly Detection via Graph Attention Network
    Zhao, Hang
    Wang, Yujing
    Duan, Juanyong
    Huang, Congrui
    Cao, Defu
    Tong, Yunhai
    Xu, Bixiong
    Bai, Jing
    Tong, Jie
    Zhang, Qi
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 841 - 850
  • [36] Visual Analysis of Time-Series Similarities for Anomaly Detection in Sensor Networks
    Steiger, Martin
    Bernard, Juergen
    Mittelstaedt, Sebastian
    Luecke-Tieke, Hendrik
    Keim, Daniel
    May, Thorsten
    Kohlhammer, Joern
    COMPUTER GRAPHICS FORUM, 2014, 33 (03) : 401 - 410
  • [37] TMANomaly: Time-Series Mutual Adversarial Networks for Industrial Anomaly Detection
    Zhang, Lianming
    Bai, Wenji
    Xie, Xiaowei
    Chen, Liying
    Dong, Pingping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 2263 - 2271
  • [38] VUS: effective and efficient accuracy measures for time-series anomaly detection
    Boniol, Paul
    Krishna, Ashwin K.
    Bruel, Marine
    Liu, Qinghua
    Huang, Mingyi
    Palpanas, Themis
    Tsay, Ruey S.
    Elmore, Aaron
    Franklin, Michael J.
    Paparrizos, John
    VLDB JOURNAL, 2025, 34 (03):
  • [39] Anomaly Detection of an Air Compressor from Time-series Measurement Data
    Kim, Myeong-Joon
    Cho, Hyun-Jik
    Kang, Chul-Goo
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 825 - 828
  • [40] Multiscale Wavelet Graph AutoEncoder for Multivariate Time-Series Anomaly Detection
    Wang, Jing
    Shao, Shikuan
    Bai, Yunfei
    Deng, Jiaoxue
    Lin, Youfang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72