Fast Khovanov homology computations

被引:92
|
作者
Bar-Natan, Dror [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
categorification cobordism; divide and conquer; Jones polynomial; Kauffman bracket; Khovanov knot invariants; tangles;
D O I
10.1142/S0218216507005294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a local algorithm for Khovanov homology computations - that is, we explain how it is possible to "cancel" terms in the Khovanov complex associated with a (" local") tangle, hence canceling the many associated " global" terms in one swoosh early on. This leads to a dramatic improvement in computational efficiency. Thus our program can rapidly compute certain Khovanov homology groups that otherwise would have taken centuries to evaluate.
引用
收藏
页码:243 / 255
页数:13
相关论文
共 50 条
  • [1] Unoriented Khovanov Homology
    Baldridge, Scott
    Kauffman, Louis H.
    McCarty, Ben
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 367 - 401
  • [2] NOT EVEN KHOVANOV HOMOLOGY
    Vaz, Pedro
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 308 (01) : 223 - 256
  • [3] An Introduction to Khovanov Homology
    Kauffman, Louis H.
    KNOT THEORY AND ITS APPLICATIONS, 2016, 670 : 105 - 139
  • [4] Localization in Khovanov homology
    Stoffregen, Matthew
    Zhang, Melissa
    GEOMETRY & TOPOLOGY, 2024, 28 (04)
  • [5] Torsion of Khovanov homology
    Shumakovitch, Alexander N.
    FUNDAMENTA MATHEMATICAE, 2014, 225 : 343 - 364
  • [6] Rotors in Khovanov Homology
    MacColl, Joseph
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (01): : 159 - 169
  • [7] Odd Khovanov homology
    Ozsvath, Peter S.
    Rasmussen, Jacob
    Szabo, Zoltan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (03): : 1465 - 1488
  • [8] A refinement of Khovanov homology
    Lobb, Andrew
    Watson, Liam
    GEOMETRY & TOPOLOGY, 2021, 25 (04) : 1861 - 1917
  • [9] Evolutionary Khovanov homology
    Shen, Li
    Liu, Jian
    Wei, Guo-Wei
    AIMS MATHEMATICS, 2024, 9 (09): : 26139 - 26165
  • [10] Chromatic homology, Khovanov homology, and torsion
    Lowrance, Adam M.
    Sazdanovic, Radmila
    TOPOLOGY AND ITS APPLICATIONS, 2017, 222 : 77 - 99