Localization in Khovanov homology

被引:1
|
作者
Stoffregen, Matthew [1 ]
Zhang, Melissa [2 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Univ Calif Davis, Dept Math, Davis, CA USA
关键词
HEEGAARD FLOER HOMOLOGY; STABLE-HOMOTOPY; MATRIX FACTORIZATIONS; SPECTRAL SEQUENCE; RANK INEQUALITY; LINK HOMOLOGY; CATEGORIFICATION; COBORDISMS; INVARIANT; CATEGORY;
D O I
10.2140/gt.2024.28.1501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct equivariant Khovanov spectra for periodic links using the Burnside functor construction introduced by Lawson, Lipshitz, and Sarkar. By identifying the fixed-point sets, we obtain rank inequalities for odd and even Khovanov homologies, and their annular filtrations, for prime-periodic links in S 3 .
引用
收藏
页数:88
相关论文
共 50 条
  • [1] Unoriented Khovanov Homology
    Baldridge, Scott
    Kauffman, Louis H.
    McCarty, Ben
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 367 - 401
  • [2] NOT EVEN KHOVANOV HOMOLOGY
    Vaz, Pedro
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 308 (01) : 223 - 256
  • [3] An Introduction to Khovanov Homology
    Kauffman, Louis H.
    KNOT THEORY AND ITS APPLICATIONS, 2016, 670 : 105 - 139
  • [4] Torsion of Khovanov homology
    Shumakovitch, Alexander N.
    FUNDAMENTA MATHEMATICAE, 2014, 225 : 343 - 364
  • [5] Rotors in Khovanov Homology
    MacColl, Joseph
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (01): : 159 - 169
  • [6] Odd Khovanov homology
    Ozsvath, Peter S.
    Rasmussen, Jacob
    Szabo, Zoltan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (03): : 1465 - 1488
  • [7] A refinement of Khovanov homology
    Lobb, Andrew
    Watson, Liam
    GEOMETRY & TOPOLOGY, 2021, 25 (04) : 1861 - 1917
  • [8] Evolutionary Khovanov homology
    Shen, Li
    Liu, Jian
    Wei, Guo-Wei
    AIMS MATHEMATICS, 2024, 9 (09): : 26139 - 26165
  • [9] Chromatic homology, Khovanov homology, and torsion
    Lowrance, Adam M.
    Sazdanovic, Radmila
    TOPOLOGY AND ITS APPLICATIONS, 2017, 222 : 77 - 99
  • [10] Functoriality of Khovanov homology
    Vogel, Pierre
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (04)