Music Genre Classification using EMD and Pitch Based Feature

被引:0
|
作者
Sarkar, Rajib [1 ]
Saha, Sanjoy Kumar [1 ]
机构
[1] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata, India
关键词
Music Genre Classification; Pitch based feature; Empirical Mode Decomposition (EMD);
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated classification of music signal is an active area of research. It can act as the fundamental step for various applications like archival, indexing and retrieval of music data. In this work, a simple methodology is presented to categorize the music signals based on their genre. In order to capture the characteristics of the music signal of different genres, signal is first decomposed to extract the component reflecting the desired degree of local characteristics using empirical mode decomposition (EMD). Pitch based features are computed corresponding to the signal at suitable intermediate frequency range. Multi-layer perceptron network is used for classification. Experiment with GTZAN dataset and comparison with number of state-of-the-art systems reflect the effectiveness of the proposed methodology.
引用
收藏
页码:257 / +
页数:6
相关论文
共 50 条
  • [31] Music Genre Classification Using Contrastive Dissimilarity
    Costanzi, Gabriel Henrique
    Teixeira, Lucas O.
    Felipe, Gustavo Z.
    Cavalcanti, George D. C.
    Costa, Yandre M. G.
    2024 31ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, IWSSIP 2024, 2024,
  • [32] Music Genre Classification Based on Deep Learning
    Zhang, Wenlong
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [33] Deep attention based music genre classification
    Yu, Yang
    Luo, Sen
    Liu, Shenglan
    Qiao, Hong
    Liu, Yang
    Feng, Lin
    NEUROCOMPUTING, 2020, 372 : 84 - 91
  • [34] Brain and Music: Music Genre Classification using Brain Signals
    Ghaemmaghami, Pouya
    Sebe, Nicu
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 708 - 712
  • [35] Music genre classification and music recommendation by using deep learning
    Elbir, A.
    Aydin, N.
    ELECTRONICS LETTERS, 2020, 56 (12) : 627 - 629
  • [36] Automatic Music Genre Classification Based on CRNN
    Cheng, Yu-Huei
    Chang, Pang-Ching
    Nguyen, Duc-Man
    Kuo, Che-Nan
    ENGINEERING LETTERS, 2021, 29 (01) : 312 - 316
  • [37] Local-feature-map Integration Using Convolutional Neural Networks for Music Genre Classification
    Nakashika, Toru
    Garcia, Christophe
    Takiguchi, Tetsuya
    13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 1750 - 1753
  • [38] Audio feature extraction based on sub-band signal correlations for music genre classification
    Kobayashi, Takuya
    Suzuki, Yusuke
    Kubota, Akira
    2018 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM 2018), 2018, : 180 - 181
  • [39] Music-Genre Classification System based on Spectro-Temporal Features Feature Selection
    Lim, Shin-Cheol
    Lee, Jong-Seol
    Jang, Sei-Jin
    Lee, Soek-Pil
    Kim, Moo Young
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2012, 58 (04) : 1262 - 1268
  • [40] Music Genre Classification via Sequential Wavelet Scattering Feature Learning
    Kanalici, Evren
    Bilgin, Gokhan
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2019, PT II, 2019, 11776 : 365 - 372