Fermionic R-operator and integrability of the one-dimensional Hubbard model

被引:25
|
作者
Umeno, Y [1 ]
Shiroishi, M [1 ]
Wadati, M [1 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
关键词
XYZ fermion model; one-dimensional Hubbard model; fermionic R-operator; Yang-Baxter equation; SO(4) symmetry;
D O I
10.1143/JPSJ.67.2242
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a new type of the Yang-Baxter equation (YBE) and the decorated Yang-Baxter equation (DYBE). Those relations for the fermionic R-operator were introduced recently as a tool to treat the integrability of the fermion models. Using the YBE and the DYBE for the XX fermion model, we construct the fermionic R-operator for the one-dimensional (1D) Hubbard model. It gives another proof of the integrability of the 1D Hubbard model. Furthermore a new approach to the SO(4) symmetry of the ID Hubbard model is discussed.
引用
收藏
页码:2242 / 2254
页数:13
相关论文
共 50 条
  • [31] On the pseudospin symmetry in the one-dimensional Hubbard model
    Noce, C
    Cuoco, M
    Romano, A
    PHYSICS LETTERS A, 1998, 240 (1-2) : 91 - 94
  • [32] Magnetic impurity in the one-dimensional Hubbard model
    Zvyagin, AA
    Schlottmann, P
    PHYSICAL REVIEW B, 1997, 56 (01): : 300 - 306
  • [33] Excitonic states in the one-dimensional Hubbard model
    Australian Natl Univ, Canberra
    Philos Mag Lett, 1 (59-67):
  • [34] AN ANALYSIS OF SOLUTIONS OF THE ONE-DIMENSIONAL HUBBARD MODEL
    Jakubczyk, Dorota
    REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (03) : 379 - 388
  • [35] Conservation laws in the one-dimensional Hubbard model
    Carmelo, JMP
    Prosen, T
    Campbell, DK
    PHYSICAL REVIEW B, 2001, 63 (20):
  • [36] Bosonization and correlators of the one-dimensional Hubbard model
    Ovchinnikov, A. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (10):
  • [37] Charge diffusion in the one-dimensional Hubbard model
    Steinigeweg, R.
    Jin, F.
    De Raedt, H.
    Michielsen, K.
    Gemmer, J.
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [38] Quantum deformations of the one-dimensional Hubbard model
    Beisert, Niklas
    Koroteev, Peter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (25)
  • [39] Thermodynamics and excitations of the one-dimensional Hubbard model
    Deguchi, T
    Essler, FHL
    Göhmann, F
    Klümper, A
    Korepin, VE
    Kusakabe, K
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 331 (05): : 197 - 281
  • [40] THERMODYNAMIC PROPERTIES OF ONE-DIMENSIONAL HUBBARD MODEL
    BRANDT, U
    ZEITSCHRIFT FUR PHYSIK, 1974, 269 (03): : 221 - 228