eMIL: Advanced emission M?ssbauer spectrometer for measurements in versatile conditions

被引:1
|
作者
Zyabkin, Dmitry, V [1 ,2 ]
Vetter, Ulrich [1 ]
Linderhof, Fredericus M. A. [2 ]
Gunnlaugsson, Haraldur P. [3 ]
Schaaf, Peter [1 ]
机构
[1] TU Ilmenau, Inst Micro & Nanotechnol MacroNano, Inst Mat Sci & Engn, Chair Mat Elect Engn & Elect, Gustav Kirchhoff Str 5, D-98693 Ilmenau, Germany
[2] Palacky Univ Olomouc, Fac Sci, Dept Expt Phys, 17 Listopadu 12, Olomouc, Czech Republic
[3] Univ Iceland, Sci Inst, Dunhaga 3, IS-107 Reykjavik, Iceland
关键词
LASER ION-SOURCE; MOSSBAUER-SPECTROSCOPY; FE-57; SEMICONDUCTORS;
D O I
10.1016/j.nima.2020.163973
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The current work presents a contemporary design of an advanced emission Mössbauer Spectrometer: eMIL equipped with a parallel-plate avalanche detector, which has been devised and built for the Mössbauer collaboration at ISOLDE/CERN. The setup is based on emission geometry, combined with on-line/off-line isotope implantation and provides numerous advantages over conversion electron, common emission (where isotope is deposited chemically on a sample) or transmission Mössbauer spectroscopy. eMIL is designed to measure hyperfine interactions in solids under various exposures. The implemented design overcomes limitations and improves performance and handling. In the current revision, the chamber is supplied with an UV extension — allowing to perform studies of photo-catalytic materials under external light exposure. A specifically designed motorized lid-samples-holder is fully automatized, and makes it possible to study up to 4 samples loaded in a magazine within a temperature range from RT up to 1100 K and to perform angular dependent measurements in high vacuum. This work additionally briefly describes data acquisition with additional electronic blocks, vacuum and data-acquisition system construction. © 2020 The Authors
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Secondary radiation emission at Mössbauer total external reflection
    Andreeva, M.A.
    Irkaev, S.M.
    Semenov, V.G.
    Hyperfine Interactions, 1996, 97-98 (01): : 605 - 623
  • [32] Surface oxidation control of nanosized magnetite and Mössbauer measurements
    R. E. Vandenberghe
    I. Nedkov
    T. Merodiiska
    L. Slavov
    Hyperfine Interactions, 2005, 165 : 267 - 271
  • [33] NEW VERSATILE COMPUTER-CONTROLLED DIRECT READING EMISSION SPECTROMETER
    STRASHEIM, A
    THAIN, ME
    WALTERS, NM
    CLAASE, C
    HUMAN, HGC
    FERREIRA, NP
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1983, 38 (5-6) : 921 - 936
  • [34] To the application of the emission Mössbauer and positron annihilation spectroscopies for detection of carcinogens
    A. V. Bokov
    V. M. Byakov
    L. A. Kulikov
    Yu. D. Perfiliev
    S. V. Stepanov
    Hyperfine Interactions, 2017, 238
  • [35] Mössbauer antineutrinos: Recoilless resonant emission and absorption of electron antineutrinos
    Walter Potzel
    Physics of Particles and Nuclei, 2011, 42 : 661 - 666
  • [36] Versatile and compact wide-range VUV spectrometer for quantitative measurements
    Shevelko, A. P.
    QUANTUM ELECTRONICS, 2017, 47 (09) : 853 - 859
  • [37] Effects of trapped electrons on the line shape in emission Mössbauer spectra
    Yu. D. Perfiliev
    V. S. Rusakov
    L. A. Kulikov
    A. A. Kamnev
    K. Alkhatib
    Hyperfine Interactions, 2006, 167 : 881 - 885
  • [38] Investigations of grain boundaries in copper using emission Mössbauer spectroscopy
    O. Schneeweiss
    J. Čermák
    I. Turek
    P. Lejček
    Hyperfine Interactions, 2000, 126 : 215 - 218
  • [39] VERSATILE RADIOMETER FOR IR EMISSION MEASUREMENTS OF ATMOSPHERE AND TARGETS
    HUPPI, RJ
    OPTICAL ENGINEERING, 1977, 16 (05) : 485 - 492
  • [40] Biodegradation of magnetic nanoparticles evaluated from Mössbauer and magnetization measurements
    I. Mischenko
    M. Chuev
    V. Cherepanov
    M. Polikarpov
    V. Panchenko
    Hyperfine Interactions, 2013, 219 : 57 - 61