Hypergraph Random Walks, Laplacians, and Clustering

被引:31
|
作者
Hayashi, Koby [1 ]
Aksoy, Sinan G. [2 ]
Park, Cheong Hee [3 ]
Park, Haesun [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[3] Chungnam Natl Univ, Daejeon, South Korea
基金
美国能源部;
关键词
hypergraphs; random walks; clustering; Laplacian; Symmetric NMF; Joint NMF; edge-dependent vertex weights;
D O I
10.1145/3340531.3412034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a flexible framework for clustering hypergraph-structured data based on recently proposed random walks utilizing edge-dependent vertex weights. When incorporating edge-dependent vertex weights (EDVW), a weight is associated with each vertex-hyperedge pair, yielding a weighted incidence matrix of the hypergraph. Such weightings have been utilized in term-document representations of text data sets. We explain how random walks with EDVW serve to construct different hypergraph Laplacian matrices, and then develop a suite of clustering methods that use these incidence matrices and Laplacians for hypergraph clustering. Using several data sets from real-life applications, we compare the performance of these clustering algorithms experimentally against a variety of existing hypergraph clustering methods. We show that the proposed methods produce high-quality clusters and conclude by highlighting avenues for future work.
引用
收藏
页码:495 / 504
页数:10
相关论文
共 50 条
  • [41] Random walk on random walks
    Hilario, M. R.
    den Hollander, F.
    dos Santos, R. S.
    Sidoravicius, V.
    Teixeira, A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35
  • [42] Random Walks on Random Graphs
    Cooper, Colin
    Frieze, Alan
    NANO-NET, 2009, 3 : 95 - +
  • [43] Random walks in a random environment
    S. R. S. Varadhan
    Proceedings Mathematical Sciences, 2004, 114 : 309 - 318
  • [44] RANDOM WALKS ON THE RANDOM GRAPH
    Berestycki, Nathanael
    Lubetzky, Eyal
    Peres, Yuval
    Sly, Allan
    ANNALS OF PROBABILITY, 2018, 46 (01): : 456 - 490
  • [45] How random are random walks?
    Blei, R
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS III, 2002, 52 : 19 - 31
  • [46] Hypergraph matching via game-theoretic hypergraph clustering
    Hou, Jian
    Pelillo, Marcello
    Yuan, Huaqiang
    PATTERN RECOGNITION, 2022, 125
  • [47] Determinants of Laplacians on random hyperbolic surfaces
    Frédéric Naud
    Journal d'Analyse Mathématique, 2023, 151 : 265 - 291
  • [48] DETERMINANTS OF LAPLACIANS ON RANDOM HYPERBOLIC SURFACES
    Naud, Frederic
    JOURNAL D ANALYSE MATHEMATIQUE, 2023, 151 (01): : 265 - 291
  • [49] Random matrix analysis of network Laplacians
    Jalan, Sarika
    Bandyopadhyay, Jayendra N.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (2-3) : 667 - 674
  • [50] On the Maximal Cut in a Random Hypergraph
    Zakharov, P. A.
    Shabanov, D. A.
    DOKLADY MATHEMATICS, 2021, 104 (03) : 336 - 339