Selecting Classifiers for Medical Data Analysis

被引:0
|
作者
Abin, Deepa [1 ]
Potey, M. A. [1 ]
机构
[1] DY Patil Coll Engn, Dept Comp Engn, Pune, Maharashtra, India
关键词
Training set; test data; decision tree; error estimates;
D O I
10.1109/ICMIRA.2013.60
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Applying data mining algorithms for knowledge discovery is being done in almost all domains but particularly in medical and healthcare domain it is still a challenge. Health issues are a major concern in the current world. Massive amount of high dimensional data is generated across the medical organizations. To discover knowledge for building efficient healthcare systems data mining algorithms play a crucial role. We have applied selected Decision tree classification algorithms for performing medical data analysis which is important in medical sector. We suggest appropriateness of the selected algorithms to the specific disease data.
引用
收藏
页码:285 / 289
页数:5
相关论文
共 50 条
  • [21] An Empirical Study of Combined Classifiers for Knowledge Discovery on Medical Data Bases
    Lopes, Lucelene
    Scalabrin, Edson Emilio
    Fernandes, Paulo
    ADVANCED WEB AND NETWORK TECHNOLOGIES, AND APPLICATIONS, 2008, 4977 : 110 - +
  • [22] Incremental SMOTE with Control Coefficient for Classifiers in Data Starved Medical Applications
    Bae, Wan D.
    Alkobaisi, Shayma
    Bankar, Siddheshwari
    Bhuvaji, Sartaj
    Singhvi, Jay
    Irukulla, Madhuroopa
    McDonnell, William
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2024, 2024, 14912 : 112 - 119
  • [23] Ensemble classifiers for medical diagnosis of knee osteoarthritis using gait data
    Koktas, Nigar Sen
    Yalabik, Nese
    Yavuzer, Gunes
    ICMLA 2006: 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2006, : 225 - +
  • [24] Comparison of Four Methods of Combining Classifiers on the Basis of Dispersed Medical Data
    Przybyla-Kasperek, Malgorzata
    INTELLIGENT DECISION TECHNOLOGIES 2016, PT II, 2016, 57 : 3 - 13
  • [25] Selecting the ''best'' using data envelopment analysis
    Anderson, TR
    Uslu, A
    INNOVATION IN TECHNOLOGY MANAGEMENT - THE KEY TO GLOBAL LEADERSHIP: THE KEY TO GLOBAL LEADERSHIP, 1997, : 789 - 793
  • [26] Selecting Appropriate Machine Learning Classifiers for DGA Diagnosis
    Aizpurua, Jose Ignacio
    Catterson, Victoria M.
    Stewart, Brian G.
    McArthur, Stephen D. J.
    Lambert, Brandon
    Ampofo, Bismark
    Pereira, Gavin
    Cross, James G.
    2017 IEEE CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENON (CEIDP), 2017, : 153 - 156
  • [27] Selecting classifiers techniques for outcome prediction for kvazistationarity process
    Lesna, N
    Shatovska, T
    Repka, V
    MODERN PROBLEMS OF RADIO ENGINEERING, TELECOMMUNICATIONS AND COMPUTER SCIENCE, PROCEEDINGS, 2002, : 145 - 145
  • [28] Using Bayesian networks for selecting classifiers in GP ensembles
    De Stefano, C.
    Folino, G.
    Fontanella, F.
    di Freca, A. Scotto
    INFORMATION SCIENCES, 2014, 258 : 200 - 216
  • [29] Selecting and combining classifiers simultaneously with particle swarm optimization
    Yang, Li Ying
    Zhang, Jun Ying
    Wang, Wen Jun
    Information Technology Journal, 2009, 8 (02) : 241 - 245
  • [30] Selecting parameter values for Mahalanobis Distance fuzzy classifiers
    Deer, P
    Eklund, P
    10TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3: MEETING THE GRAND CHALLENGE: MACHINES THAT SERVE PEOPLE, 2001, : 541 - 544