Zero-Shot Learning via Robust Latent Representation and Manifold Regularization

被引:39
|
作者
Meng, Min [1 ]
Yu, Jun [2 ]
机构
[1] Guangdong Univ Technol, Sch Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Hangzhou Dianzi Univ, Dept Comp Sci, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Zero shot learning; image classification; latent subspace; manifold regularization;
D O I
10.1109/TIP.2018.2881926
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot learning (ZSL) for visual recognition aims to accurately recognize the objects of unseen classes through mapping the visual feature to an embedding space spanned by class semantic information. However, the semantic gap across visual features and their underlying semantics is still a big obstacle in ZSL. Conventional ZSL methods construct that the mapping typically focus on the original visual features that are independent of the ZSL tasks, thus degrading the prediction performance. In this paper, we propose an effective method to uncover an appropriate latent representation of data for the purpose of zero-shot classification. Specifically, we formulate a novel framework to jointly learn the latent subspace and cross-modal embedding to link visual features with their semantic representations. The proposed framework combines feature learning and semantics prediction, such that the learned data representation is more discriminative to predict the semantic vectors, hence improving the overall classification performance. To learn a robust latent subspace, we explicitly avoid the information loss by ensuring the reconstruction ability of the obtained data representation. An efficient algorithm is designed to solve the proposed optimization problem. To fully exploit the intrinsic geometric structure of data, we develop a manifold regularization strategy to refine the learned semantic representations, leading to further improvements of the classification performance. To validate the effectiveness of the proposed approach, extensive experiments are conducted on three ZSL benchmarks and encouraging results are achieved compared with the state-of-the-art ZSL methods.
引用
收藏
页码:1824 / 1836
页数:13
相关论文
共 50 条
  • [21] Discriminative Latent Attribute Autoencoder for Zero-Shot Learning
    Chen, Runqing
    Wu, Songsong
    Sun, Guangcheng
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 873 - 877
  • [22] Marginalized Latent Semantic Encoder for Zero-Shot Learning
    Ding, Zhengming
    Liu, Hongfu
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 6184 - 6192
  • [23] Learning Discriminative Latent Attributes for Zero-Shot Classification
    Jiang, Huajie
    Wang, Ruiping
    Shan, Shiguang
    Yang, Yi
    Chen, Xilin
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4233 - 4242
  • [24] Zero-shot recognition with latent visual attributes learning
    Yurui Xie
    Xiaohai He
    Jing Zhang
    Xiaodong Luo
    Multimedia Tools and Applications, 2020, 79 : 27321 - 27335
  • [25] CONNECTING TARGETS VIA LATENT TOPICS AND CONTRASTIVE LEARNING: A UNIFIED FRAMEWORK FOR ROBUST ZERO-SHOT AND FEW-SHOT STANCE DETECTION
    Liu, Rui
    Lin, Zheng
    Fu, Peng
    Liu, Yuanxin
    Wang, Weiping
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 7812 - 7816
  • [26] Zero-shot visual grounding via coarse-to-fine representation learning
    Mi, Jinpeng
    Jin, Shaofei
    Chen, Zhiqian
    Liu, Dan
    Wei, Xian
    Zhang, Jianwei
    NEUROCOMPUTING, 2024, 610
  • [27] ZERO-SHOT LEARNING USING STACKED AUTOENCODER WITH MANIFOLD REGULARIZATIONS
    Song, Jianqiang
    Shi, Guangming
    Xie, Xuemei
    Gao, Dahua
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3651 - 3655
  • [28] Zero-Shot Leaning with Manifold Embedding
    Yu, Yun-long
    Ji, Zhong
    Pang, Yan-wei
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 135 - 147
  • [29] Manifold embedding for zero-shot recognition
    Ji, Zhong
    Yu, Xuejie
    Yu, Yunlong
    He, Yuqing
    COGNITIVE SYSTEMS RESEARCH, 2019, 55 : 34 - 43
  • [30] Zero-Shot Classification with Discriminative Semantic Representation Learning
    Ye, Meng
    Guo, Yuhong
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5103 - 5111