Generalized relative entropies in the classical limit

被引:4
|
作者
Kowalski, A. M. [1 ]
Martin, M. T. [1 ,2 ]
Plastino, A. [1 ,2 ]
机构
[1] Univ Nacl La Plata, Fac Ciencias Exactas, Inst Fis, IFLP CCT Conicet, RA-1900 La Plata, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Argentinas Natl Res Council, RA-1033 Buenos Aires, DF, Argentina
关键词
Tsallis relative entropy; Cressie-Read quantifiers; Classical limit; Time-series; WAVE-PACKET; QUANTUM; COMPLEXITY; INFORMATION; CHAOS; MODEL;
D O I
10.1016/j.physa.2014.12.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our protagonists are (i) the Cressie-Read family of divergences (characterized by the parameter gamma), (ii) Tsallis' generalized relative entropies (characterized by the q one), and, as a particular instance of both, (iii) the Kullback-Leibler (KL) relative entropy. In their normalized versions, we ascertain the equivalence between (i) and (ii). Additionally, we employ these three entropic quantifiers in order to provide a statistical investigation of the classical limit of a semiclassical model, whose properties are well known from a purely dynamic viewpoint. This places us in a good position to assess the appropriateness of our statistical quantifiers for describing involved systems. We compare the behaviour of (i), (ii), and (iii) as one proceeds towards the classical limit. We determine optimal ranges for gamma and/or q. It is shown the Tsallis-quantifier is better than KL's for 1.5 < q < 2.5. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 174
页数:8
相关论文
共 50 条
  • [41] RELATIVE ENTROPIES AND ENTANGLEMENT MONOTONES
    Datta, Nilanjana
    MATHEMATICAL RESULTS IN QUANTUM PHYSICS, 2011, : 3 - 20
  • [42] RELATIVE ENTROPIES FOR CONVEX BODIES
    Jenkinson, Justin
    Werner, Elisabeth M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (06) : 2889 - 2906
  • [43] Thermostatistical aspects of generalized entropies
    Fa, KS
    Lenzi, EK
    CHAOS SOLITONS & FRACTALS, 2004, 20 (02) : 227 - 233
  • [44] On the statistical interpretation of generalized entropies
    Figueiredo, Annibal
    Amato, Marco Antonio
    Marciano da Rocha Filho, Tarcisio
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 367 : 191 - 206
  • [45] Generalized entropies and quantum entanglement
    Canosa, N
    Rossignoli, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 329 (3-4) : 371 - 376
  • [46] Some inequalities on generalized entropies
    Furuichi, Shigeru
    Minculete, Nicusor
    Mitroi, Flavia-Corina
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [47] Bayes' estimators of generalized entropies
    Holste, D
    Grosse, I
    Herzel, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (11): : 2551 - 2566
  • [48] Generalized Entropies, Variance and Applications
    Toomaj, Abdolsaeed
    Di Crescenzo, Antonio
    ENTROPY, 2020, 22 (06)
  • [49] Some inequalities on generalized entropies
    Shigeru Furuichi
    Nicuşor Minculete
    Flavia-Corina Mitroi
    Journal of Inequalities and Applications, 2012
  • [50] A Brief Review of Generalized Entropies
    Amigo, Jose M.
    Balogh, Samuel G.
    Hernandez, Sergio
    ENTROPY, 2018, 20 (11)