AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation

被引:2
|
作者
Varna, Fevzi Tugrul [1 ]
Husbands, Phil [1 ]
机构
[1] Univ Sussex, Dept Informat, Brighton, E Sussex, England
关键词
particle swarm optimisation; swarm intelligence;
D O I
10.1109/SSCI50451.2021.9660149
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new particle swarm optimisation variant: the altruistic heterogeneous particle swarm optimisation algorithm (AHPSO). The algorithm conceptualises particles as energy-driven agents with bio-inspired altruistic behaviour. In our approach, particles possess a current energy level and an activation threshold and are in one of two possible states (active or inactive) depending on their energy levels at time tau. The idea of altruism is used to form lending-borrowing relationships among particles to change an agent's state from inactive to active, and the main search mechanism exploits this idea. Diversity in the swarm, which prevent premature convergence, is maintained via agent states and the level of altruistic behaviour particles exhibit. The performance of AHPSO was compared with 11 metaheuristics and 12 state-of-the-art PSO variants using the CEC'17 and CEC'05 test suites at 30 and 50 dimensions. The AHPSO algorithm outperformed all 23 comparison algorithms on both benchmark test suites at both 30 and 50 dimensions.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A global-to-local searching-based binary particle swarm optimisation algorithm and its applications in WSN coverage optimisation
    Li Kangshun
    Feng Ying
    Chen Dunmin
    Li Shanni
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2020, 32 (04) : 197 - 208
  • [32] Biased Eavesdropping Particles: A Novel Bio-inspired Heterogeneous Particle Swarm Optimisation Algorithm
    Varna, Fevzi Tugrul
    Husbands, Phil
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [33] Perceptive particle swarm optimisation
    Kaewkamnerdpong, B
    Bentley, PJ
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2005, : 259 - 263
  • [34] Boid particle swarm optimisation
    Cui, Zhihua
    Shi, Zhongzhi
    International Journal of Innovative Computing and Applications, 2009, 2 (02) : 78 - 85
  • [35] Geometric particle swarm optimisation
    Moraglio, Alberto
    Di Chio, Cecilia
    Poli, Riccardo
    GENETIC PROGRAMMING, PROCEEDINGS, 2007, 4445 : 125 - +
  • [36] On the Scalability of Particle Swarm Optimisation
    Piccand, Sebastien
    O'Neill, Michael
    Walker, Jacqueline
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2505 - +
  • [37] Distributed resource allocation optimisation algorithm based on particle swarm optimisation in wireless sensor network
    Hao, Xiaochen
    Yao, Ning
    Wang, Jiaojiao
    Wang, Liyuan
    IET COMMUNICATIONS, 2020, 14 (17) : 2990 - 2999
  • [38] Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm
    Llorente, Ignacio
    Luna, Ladislao
    AQUACULTURE INTERNATIONAL, 2014, 22 (06) : 1837 - 1849
  • [39] Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm
    Ignacio Llorente
    Ladislao Luna
    Aquaculture International, 2014, 22 : 1837 - 1849
  • [40] An improved multi-objective particle swarm optimisation algorithm
    Fu, Tiaoping
    Shang Ya-Ling
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 12 (1-2) : 66 - 71