On a nonlocal diffusion model with Neumann boundary conditions

被引:17
|
作者
Bogoya, Mauricio [1 ]
Gomez S, Cesar A. [1 ]
机构
[1] Univ Nacl Colombia, Dept Math, Bogota, Colombia
关键词
Nonlocal diffusion; Neumann boundary conditions; Asymptotic behavior; ASYMPTOTIC-BEHAVIOR; PHASE-TRANSITIONS; CONVOLUTION MODEL; TRAVELING-WAVES; EQUATION;
D O I
10.1016/j.na.2011.12.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlocal diffusion model analogous to heat equation with Neumann boundary conditions. We prove the existence and uniqueness of solutions and a comparison principle. Furthermore, we analyze the asymptotic behavior of the solutions as the temporal variable goes to infinity and the boundary datum depends only on a spacial variable. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3198 / 3209
页数:12
相关论文
共 50 条