Multilinear Marcinkiewicz-Zygmund Inequalities

被引:5
|
作者
Carando, Daniel [1 ,2 ]
Mazzitelli, Martin [3 ,4 ]
Ombrosi, Sheldy [5 ,6 ]
机构
[1] Univ Buenos Aires, Dept Matemat Pab 1, Fac Cs Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Buenos Aires, DF, Argentina
[3] Univ Nacl Cuyo, Inst Balseiro, CNEA, Buenos Aires, DF, Argentina
[4] Univ Nacl Comahue, Ctr Reg Univ Bariloche, Dept Matemat, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[5] Univ Nacl Sur, Dept Matemat, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[6] Consejo Nacl Invest Cient & Tecn, INMABB, Bahia Blanca, Buenos Aires, Argentina
关键词
Vector-valued inequalities; Multilinear operators; Calderon-Zygmund operators; WEIGHTED NORM INEQUALITIES; VECTOR-VALUED INEQUALITIES; EXTRAPOLATION; SPACES;
D O I
10.1007/s00041-017-9563-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on r -valued extensions of linear operators. We show that for certain 1 = p, q1,..., qm, r = 8, there is a constant C = 0 such that for every bounded multilinear operator T : Lq1(mu 1) x center dot center dot center dot xLqm (mu m). L p(.) and functions {f 1 k1} n1 k1= 1. Lq1(mu 1),..., {f m km} nm km= 1. Lqm (mu m), the following inequality holds parallel to k1km | T ( f 1 k1,, f m km)| r.. 1/ r L p(.) = C T m i= 1 ni ki= 1 | f i ki | r.. 1/ r Lqi (mu i). (1) In some cases we also calculate the best constant C = 0 satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderon-Zygmund operators.
引用
收藏
页码:51 / 85
页数:35
相关论文
共 50 条