Multilinear Marcinkiewicz-Zygmund Inequalities

被引:5
|
作者
Carando, Daniel [1 ,2 ]
Mazzitelli, Martin [3 ,4 ]
Ombrosi, Sheldy [5 ,6 ]
机构
[1] Univ Buenos Aires, Dept Matemat Pab 1, Fac Cs Exactas & Nat, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, Buenos Aires, DF, Argentina
[3] Univ Nacl Cuyo, Inst Balseiro, CNEA, Buenos Aires, DF, Argentina
[4] Univ Nacl Comahue, Ctr Reg Univ Bariloche, Dept Matemat, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[5] Univ Nacl Sur, Dept Matemat, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[6] Consejo Nacl Invest Cient & Tecn, INMABB, Bahia Blanca, Buenos Aires, Argentina
关键词
Vector-valued inequalities; Multilinear operators; Calderon-Zygmund operators; WEIGHTED NORM INEQUALITIES; VECTOR-VALUED INEQUALITIES; EXTRAPOLATION; SPACES;
D O I
10.1007/s00041-017-9563-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend to the multilinear setting classical inequalities of Marcinkiewicz and Zygmund on r -valued extensions of linear operators. We show that for certain 1 = p, q1,..., qm, r = 8, there is a constant C = 0 such that for every bounded multilinear operator T : Lq1(mu 1) x center dot center dot center dot xLqm (mu m). L p(.) and functions {f 1 k1} n1 k1= 1. Lq1(mu 1),..., {f m km} nm km= 1. Lqm (mu m), the following inequality holds parallel to k1km | T ( f 1 k1,, f m km)| r.. 1/ r L p(.) = C T m i= 1 ni ki= 1 | f i ki | r.. 1/ r Lqi (mu i). (1) In some cases we also calculate the best constant C = 0 satisfying the previous inequality. We apply these results to obtain weighted vector-valued inequalities for multilinear Calderon-Zygmund operators.
引用
收藏
页码:51 / 85
页数:35
相关论文
共 50 条
  • [1] Multilinear Marcinkiewicz-Zygmund Inequalities
    Daniel Carando
    Martin Mazzitelli
    Sheldy Ombrosi
    Journal of Fourier Analysis and Applications, 2019, 25 : 51 - 85
  • [2] Marcinkiewicz-Zygmund inequalities
    Ortega-Cerda, Joaquim
    Saludes, Jordi
    JOURNAL OF APPROXIMATION THEORY, 2007, 145 (02) : 237 - 252
  • [3] Optimal constants in the Marcinkiewicz-Zygmund inequalities
    Ferger, Dietmar
    STATISTICS & PROBABILITY LETTERS, 2014, 84 : 96 - 101
  • [4] EXPONENTIAL ROSENTHAL AND MARCINKIEWICZ-ZYGMUND INEQUALITIES
    Ho, Kwok-Pun
    UFA MATHEMATICAL JOURNAL, 2020, 12 (03): : 97 - 106
  • [5] Probabilistic spherical Marcinkiewicz-Zygmund inequalities
    Boettcher, Albrecht
    Kunis, Stefan
    Potts, Daniel
    JOURNAL OF APPROXIMATION THEORY, 2009, 157 (02) : 113 - 126
  • [6] ON A REFINEMENT OF MARCINKIEWICZ-ZYGMUND TYPE INEQUALITIES
    Kpoo, A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2020, 26 (04): : 196 - 209
  • [7] Marcinkiewicz-Zygmund inequalities in variable Lebesgue spaces
    Bonich, Marcos
    Carando, Daniel
    Mazzitelli, Martin
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (03)
  • [8] Marcinkiewicz-Zygmund inequalities for polynomials in Fock space
    Karlheinz Gröchenig
    Joaquim Ortega-Cerdà
    Mathematische Zeitschrift, 2022, 302 : 1409 - 1428
  • [9] Marcinkiewicz-Zygmund Type Inequalities in the Real Ball
    Avetisyan, K.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (01): : 35 - 42
  • [10] Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities
    Defant, A
    Junge, M
    STUDIA MATHEMATICA, 1997, 125 (03) : 271 - 287