The AFLOW standard for high-throughput materials science calculations

被引:257
|
作者
Calderon, Camilo E. [1 ]
Plata, Jose J. [1 ]
Toher, Cormac [1 ]
Oses, Corey [1 ]
Levy, Ohad [1 ]
Fornari, Marco [2 ]
Natan, Amir [3 ]
Mehl, Michael J. [4 ]
Hart, Gus [5 ]
Nardelli, Marco Buongiorno [6 ,7 ]
Curtarolo, Stefano [8 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
[2] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48858 USA
[3] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[4] Naval Res Lab, Ctr Computat Mat Sci, Washington, DC 20375 USA
[5] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
[6] Univ N Texas, Dept Phys, Denton, TX 76203 USA
[7] Univ N Texas, Dept Chem, Denton, TX 76203 USA
[8] Duke Univ, Mat Sci Elect Engn Phys & Chem, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
High-throughput; Materials genomics; AFLOWLIB; VASP; GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; ELECTRONIC-STRUCTURE; ULTRASOFT PSEUDOPOTENTIALS; METALS; AFLOWLIB.ORG; TRANSITION; GAS; 4F;
D O I
10.1016/j.commatsci.2015.07.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Automatic-Flow (AFLOW) standard for the high-throughput construction of materials science electronic structure databases is described. Electronic structure calculations of solid state materials depend on a large number of parameters which must be understood by researchers, and must be reported by originators to ensure reproducibility and enable collaborative database expansion. We therefore describe standard parameter values for k-point grid density, basis set plane wave kinetic energy cut-off, exchange-correlation functionals, pseudopotentials, DFT+U parameters, and convergence criteria used in AFLOW calculations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:233 / 238
页数:6
相关论文
共 50 条
  • [21] Biomaterials science and high-throughput screening
    Hubbell, JA
    NATURE BIOTECHNOLOGY, 2004, 22 (07) : 828 - 829
  • [22] Biomaterials science and high-throughput screening
    Jeffrey A Hubbell
    Nature Biotechnology, 2004, 22 : 828 - 829
  • [23] HTESP (High-throughput electronic structure package): A package for high-throughput ab initio calculations
    Nepal, Niraj K.
    Canfield, Paul C.
    Wang, Lin-Lin
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 244
  • [24] High-throughput calculations in the context of alloy design
    Axel van de Walle
    Mark Asta
    MRS Bulletin, 2019, 44 : 252 - 256
  • [25] High-throughput calculations in the context of alloy design
    van de Walle, Axel
    Asta, Mark
    MRS BULLETIN, 2019, 44 (04) : 252 - 256
  • [26] Early Years of High-Throughput Experimentation and Combinatorial Approaches in Catalysis and Materials Science
    Maier, Wilhelm F.
    ACS COMBINATORIAL SCIENCE, 2019, 21 (06) : 437 - 444
  • [27] Cutting Edge High-Throughput Synthesis and Characterization Techniques in Combinatorial Materials Science
    Tan, Chao
    Wu, Haijuan
    Yang, Lei
    Wang, Zegao
    ADVANCED MATERIALS TECHNOLOGIES, 2024, 9 (10)
  • [28] Searching for stable perovskite solar cell materials using materials genome techniques and high-throughput calculations
    Sun, Qingde
    Yin, Wan-Jian
    Wei, Su-Huai
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (35) : 12012 - 12035
  • [29] Looking for new thermoelectric materials among TMX intermetallics using high-throughput calculations
    Barreteau, Celine
    Crivello, Jean-Claude
    Joubert, Jean-Marc
    Alleno, Eric
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 156 : 96 - 103
  • [30] A High-Throughput Approach to Designing Materials
    不详
    CHEMICAL ENGINEERING PROGRESS, 2016, 112 (11) : 15 - 15