Van der Waals density functional calculations of binding in molecular crystals

被引:43
|
作者
Berland, Kristian [1 ]
Borck, Oyvind [2 ]
Hyldgaard, Per [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, MC2, SE-41296 Gothenburg, Sweden
[2] Norwegian Univ Sci & Technol, Dept Phys, NO-7491 Trondheim, Norway
基金
瑞典研究理事会;
关键词
vdW-DF; Molecular crystals; Density functional theory; Cage molecules; Graphite; C60; GENERALIZED GRADIENT APPROXIMATION; X-RAY; SUBLIMATION; ENTHALPIES; ACCURATE; MODEL;
D O I
10.1016/j.cpc.2010.12.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A recent paper [J. Chem. Phys. 132 (2010) 134705] illustrated the potential of the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92 (2004) 246401] for efficient first-principle accounts of structure and cohesion in molecular crystals. Since then, modifications of the original vdW-DF version (identified as vdW-DF1) have been proposed, and there is also a new version called vdW-DF2 [Phys. Rev. B 82 (2010) 081101(R)], within the vdW-DF framework. Here we investigate the performance and nature of the modifications and the new version for the binding of a set of simple molecular crystals: hexamine, dodecahedrane, C60, and graphite. These extended systems provide benchmarks for computational methods dealing with sparse matter. We show that a previously documented enhancement of non-local correlations of vdW-DF1 over an asymptotic atom-based account close to and a few A beyond binding separation persists in vdW-DF2. The calculation and analysis of the binding in molecular crystals require appropriate computational tools. In this paper, we also present details on our real-space parallel implementation of the vdW-DF correlation and on the method used to generate asymptotic atom-based pair potentials based on vdW-DF. (C) 2010 Elsevier By. All rights reserved.
引用
收藏
页码:1800 / 1804
页数:5
相关论文
共 50 条
  • [21] Semiempirical van der Waals correction to the density functional description of solids and molecular structures
    Ortmann, F.
    Bechstedt, F.
    Schmidt, W. G.
    PHYSICAL REVIEW B, 2006, 73 (20)
  • [22] Geometric and Electronic Structures of Acene Crystals: A van der Waals Density Functional Theory Study
    Miyazaki, Ryota
    Hamada, Ikutaro
    JOURNAL OF COMPUTER CHEMISTRY-JAPAN, 2019, 18 (05) : 205 - 207
  • [23] Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals
    Liu, Lixin
    Gong, Penglai
    Liu, Kailang
    Nie, Anmin
    Liu, Zhongyuan
    Yang, Sanjun
    Xu, Yongshan
    Liu, Teng
    Zhao, Yinghe
    Huang, Li
    Li, Huiqiao
    Zhai, Tianyou
    ADVANCED MATERIALS, 2022, 34 (07)
  • [24] Successful test of a seamless van der Waals density functional
    Dobson, JF
    Wang, J
    PHYSICAL REVIEW LETTERS, 1999, 82 (10) : 2123 - 2126
  • [25] Graphene on metals: A van der Waals density functional study
    Vanin, M.
    Mortensen, J. J.
    Kelkkanen, A. K.
    Garcia-Lastra, J. M.
    Thygesen, K. S.
    Jacobsen, K. W.
    PHYSICAL REVIEW B, 2010, 81 (08):
  • [26] Higher-accuracy van der Waals density functional
    Lee, Kyuho
    Murray, Eamonn D.
    Kong, Lingzhu
    Lundqvist, Bengt I.
    Langreth, David C.
    PHYSICAL REVIEW B, 2010, 82 (08):
  • [27] Van der Waals interactions studied by density functional theory
    Sato, T
    Tsuneda, T
    Hirao, K
    MOLECULAR PHYSICS, 2005, 103 (6-8) : 1151 - 1164
  • [28] A van der Waals density functional study of ice Ih
    Hamada, Ikutaro
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (21):
  • [29] Nonlocal van der Waals density functional: The simpler the better
    Vydrov, Oleg A.
    Van Voorhis, Troy
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (24):
  • [30] Van der Waals bonds in density-functional theory
    Engel, E.
    Hock, A.
    Dreizler, R.M.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 61 (03): : 325021 - 325025