A Theoretical Study of Hydrogen Transfer Catalyzed by an IrIII PC(sp3)P Pincer Complex

被引:5
|
作者
Kozuch, Sebastian [1 ,2 ]
Azerraf, Clarite [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Lise Meitner Minerva Ctr Computat Quantum Chem, IL-91904 Jerusalem, Israel
关键词
density functional calculations; energetic span model; hydrogen transfer; iridium; pincer; TRANSITION-METAL-COMPLEXES; DENSITY-FUNCTIONAL THEORY; BOND ACTIVATION; MODEL; GEOMETRIES; IRIDIUM; CHEMISTRY; MECHANISM; KETONES; CYCLES;
D O I
10.1002/cctc.201100056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A hydrogen transfer mechanism catalyzed by an Ir-III PC(sp(3))P pincer complex was studied by using DFT, and its efficiency was estimated by using the energetic span model. With the pristine complex, a hydrogen abstraction pathway could not be found, since a ligand dissociation to generate a vacant site is energetically costly. However, a nucleophilic attack of an alkoxide base (present in the reaction mixture) on the carbonyl ligand to form a carboalkoxy ligand generated an anionic catalyst that could easily provide the free site. From there, a hydride abstraction from an isopropyl ion (iPrO(-)) followed by a hydride transfer to acetophenone resulted in an efficient catalytic cycle.
引用
收藏
页码:1348 / 1353
页数:6
相关论文
共 50 条
  • [31] Iron-Catalyzed Borrowing Hydrogen β-C(sp3)-Methylation of Alcohols
    Polidano, Kurt
    Williams, Jonathan M. J.
    Morrill, Louis C.
    ACS CATALYSIS, 2019, 9 (09) : 8575 - 8580
  • [32] Iridium-Catalyzed C(sp3)-H Borylation Using Silyl-Bipyridine Pincer Ligands
    Kawazu, Ryohei
    Torigoe, Takeru
    Kuninobu, Yoichiro
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (22)
  • [33] C(sp3)-Cl Bond Activation Promoted by a POP-Pincer Rhodium(I) Complex
    Curto, Sheila G.
    de las Heras, Laura A.
    Esteruelas, Miguel A.
    Olivan, Montserrat
    Onate, Enrique
    ORGANOMETALLICS, 2019, 38 (15) : 3074 - 3083
  • [34] Mild intramolecular P-C(sp3) bond cleavage in bridging diphosphine complexes of RuII RhIII and IrIII
    De'Ath, Peter
    Elsegood, Mark R. J.
    Halliwell, Christopher A. G.
    Smith, Martin B.
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2021, 937
  • [35] Palladium(ii)-catalyzed oxidative C(sp3)-P bond formation via C(sp3)-H bond activation
    Chen, Lijin
    Zhou, Zhenfei
    Zhang, Saifei
    Li, Xiaoqian
    Ma, Xuebing
    Dong, Jiaxing
    CHEMICAL COMMUNICATIONS, 2019, 55 (91) : 13693 - 13696
  • [36] sp3 C-H Borylation Catalyzed by Iridium(III) Triboryl Complex: Comprehensive Theoretical Study of Reactivity, Regioselectivity, and Prediction of Excellent Ligand
    Zhong, Rong-Lin
    Sakaki, Shigeyoshi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (25) : 9854 - 9866
  • [37] Copper-Catalyzed Intermolecular Alkynylation and Allylation of Unactivated C(sp3)-H Bonds via Hydrogen Atom Transfer
    Liang, Lei
    Guo, Ge
    Li, Chen
    Wang, Song-Lin
    Wang, Yue-Hui
    Guo, Hai-Ming
    Niu, Hong-Ying
    ORGANIC LETTERS, 2021, 23 (21) : 8575 - 8579
  • [38] Conformational Flexibility of Dibenzobarrelene-Based PC(sp3)P Pincer Iridium Hydride Complexes: The Role of Hemilabile Functional Groups and External Coordinating Solvents
    Silantyev, Gleb A.
    Filippov, Oleg A.
    Musa, Sanaa
    Gelman, Dmitri
    Belkova, Natalia V.
    Weisz, Klaus
    Epstein, Lina M.
    Shubina, Elena S.
    ORGANOMETALLICS, 2014, 33 (21) : 5964 - 5973
  • [39] C(sp3)-C(sp3) Coupling of Cycloalkanes and Alkyl Halides via Dual Photocatalytic Hydrogen Atom Transfer and Nickel Catalysis
    Pilli, Ramadevi
    Selvam, Keerthika
    Balamurugan, Bala S. S.
    Jose, Vidya
    Rasappan, Ramesh
    ORGANIC LETTERS, 2024, 26 (15) : 2993 - 2998
  • [40] Metal-Ligand Proton Tautomerism, Electron Transfer, and C(sp3)-H Activation by a 4-Pyridinyl-Pincer Iridium Hydride Complex
    Bhatti, Tariq M.
    Kumar, Akshai
    Parihar, Ashish
    Moncy, Hellan K.
    Emge, Thomas J.
    Waldie, Kate M.
    Hasanayn, Faraj
    Goldman, Alan S.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (33) : 18296 - 18306