Pectic polysaccharides were extracted from soy flour at either room temperature (SPRT) or 121 degrees C (SPH), and their abilities to stabilize milk proteins in acidic conditions were evaluated. Both SPRT and SPH were found to contain proteinaceous components that were difficult to dissociate from polysaccharide components using size exclusion chromatography, whereas the molar mass of the former was approximately twice that of the latter. Due to the higher molar mass, SPRT was expected to provide stronger steric effects to prevent aggregation between milk proteins in acidic conditions than SPH. Alkaline treatment of SPRT for breaking beta-linkages between AA and monosaccharide residues decreased its molar mass by approximately 160 kDa, indicating that they contained naturally occurring conjugates of pectic and proteinaceous moieties. Particle size distributions in simulated acidified milk drink samples containing 0.2% SPRT or SPH showed monomodal distributions with median diameters of around 1.2 p.m at pH 4. The presence of large protein aggregates (similar to 5 mu m) was detected at 0.2% SPRT and pH 3.2, 0.6 to 0.8% SPRT and pH 4, or 0.2% SPH and pH 3.4. The presence of excess polysaccharide molecules unbound to proteins was detected at 0.2% SPRT and pH 3.2 to 3.4, 0.4 to 0.8% SPRT and pH 4, 0.2% SPH and pH 3.4 to 3.6, and 0.4 to 0.8% SPH and pH 4. The present results suggest that molecular characteristics of pectic polysaccharides vary depending on extraction conditions and hence their functional behavior.