Target Broker Compression for Multi-Level Fusion

被引:0
|
作者
Blasch, Erik [1 ]
Chen, Huamei [2 ]
Wang, Zhonghai [2 ]
Jia, Bin [2 ]
Liu, Kui [2 ]
Chen, Genshe [2 ]
Shen, Dan [2 ]
机构
[1] Air Force Res Lab, Rome, NY 13441 USA
[2] Intelligent Fus Technol, Germantown, MD 20876 USA
关键词
Information Fusion; Level 5 User Refinement; High-Level Information Fusion; Semantic Label; Hard-soft fusion;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Information Fusion consists of low-level information fusion (LLIF) of object-level assessment which is subject to many operating conditions of the sensor type, environment conditions, and the targets. Likewise, high-level information fusion (HLIF) requires proactive management of sensor parameters. One example of a parameter that affects downstream information fusion tasks of target tracking and identification is that of upstream image compression. In this paper, we present a technique for analyzing the effects of image compression on the information fusion result. The compression selections are based on user needs, target type, and information fusion function, which is a subject of the operating conditions. Results are presented that modify the Video National Imagery Interpretability Ratio (VNIIRS) equations to include compression requirements for object recognition, fusion of results, and user selections. The target broker compression method would support image fusion system providing an exemplar of LLIF-HLIF interactions.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 50 条
  • [31] Application of Multi-level Fusion for Pattern of Life Analysis
    Gross, Geoff A.
    Little, Eric
    Park, Ben
    Llinas, James
    Nagi, Rakesh
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 2009 - 2016
  • [32] Multimodal Multi-Level Fusion using Contextual Information
    Vybornova, Olga
    Gemo, Monica
    Macq, Benoit
    ERCIM NEWS, 2007, (70): : 61 - 62
  • [33] A Multi-level Data Fusion Localization Algorithm for SLAM
    Zhang H.
    Chen N.
    Dai Z.
    Fan G.
    Jiqiren/Robot, 2021, 43 (06): : 641 - 652
  • [34] Multi-level Visual Fusion Networks for Image Captioning
    Zhou, Dongming
    Zhang, Canlong
    Li, Zhixin
    Wang, Zhiwen
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [35] Multi-level information fusion to alleviate network congestion
    Lai, Joel Weijia
    Chang, Jie
    Ang, L. K.
    Cheong, Kang Hao
    INFORMATION FUSION, 2020, 63 (63) : 248 - 255
  • [36] Multi-level Feature Fusion for Automated Essay Scoring
    Wang, Jinshui
    Chen, Junyan
    Ou, Xuewen
    Han, Qingfeng
    Tang, Zhengyi
    Journal of Network Intelligence, 2023, 8 (01): : 76 - 88
  • [37] Multi-level pyramid fusion for efficient stereo matching
    Zhu, Jiaqi
    Li, Bin
    Zhao, Xinhua
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [38] Deep graph clustering with multi-level subspace fusion
    Li, Wang
    Wang, Siwei
    Guo, Xifeng
    Zhu, En
    PATTERN RECOGNITION, 2023, 134
  • [39] Multi-level feature fusion network for crowd counting
    Wang, Luyang
    Li, Yun
    Peng, Sifan
    Tang, Xiao
    Yin, Baoqun
    IET COMPUTER VISION, 2021, 15 (01) : 60 - 72
  • [40] Multi-level feature fusion based dim small ground target detection in remote sensing images
    Yan J.
    Zhang K.
    Shi T.
    Zhu G.
    Liu Y.
    Zhang Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (03): : 221 - 229