APOGEE RAISING TECHNIQUE FOR THE MAGNETOSPHERIC MULTISCALE FORMATION FLYING MISSION

被引:0
|
作者
Roberts, Craig E. [1 ]
Tichy, Jason [1 ]
Gramling, Cheryl J. [2 ]
机构
[1] AI Solut Inc, 10001 Derekwood Lane,Suite 215, Lanham, MD 20706 USA
[2] NASA, Goddard Space Flight Ctr, MMS Flight Dynam Lead, Greenbelt, MD 20771 USA
来源
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The NASA Goddard Space Flight Center's Magnetospheric Multiscale (MMS) program involves a four-spacecraft tetrahedral formation flying mission intended for launch in 2014. The mission's high Earth orbits are designed to provide repeated excursions through the magnetosphere and magnetotail for measurement of interaction phenomena between the solar wind and magnetosphere, including magnetic reconnection events. The first of two main science mission phases requires a 1.2 by 12 Earth radii (Re) orbit, while the second phase requires a 1.2 by 25 Re orbit. A transition between the two science phases is for independently raising the apogees of the four spacecraft to 25 Re in stages, followed by re-initialization of the tetrahedral formation. A variety of stringent operational requirements and constraints, plus design features of these spinning spacecraft, pose significant challenges to the apogee raising design. This paper has two main parts. The first part focuses on the strategy and methodology for, and the solutions to, the apogee raising design problem. The second part presents and discusses nominal solutions to the problem of recovery from off-nominal finite burns and maneuver contingency scenarios.
引用
收藏
页码:419 / +
页数:2
相关论文
共 50 条
  • [21] Magnetospheric Multiscale mission observations of the outer electron diffusion region
    Hwang, K. -J.
    Sibeck, D. G.
    Choi, E.
    Chen, L. -J.
    Ergun, R. E.
    Khotyaintsev, Y.
    Giles, B. L.
    Pollock, C. J.
    Gershman, D.
    Dorelli, J. C.
    Avanov, L.
    Paterson, W. R.
    Burch, J. L.
    Russell, C. T.
    Strangeway, R. J.
    Torbert, R. B.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (05) : 2049 - 2059
  • [22] EXPECTED NAVIGATION FLIGHT PERFORMANCE FOR THE MAGNETOSPHERIC MULTISCALE (MMS) MISSION
    Olson, Corwin
    Wright, Cinnamon
    Long, Anne
    SPACEFLIGHT MECHANICS 2012, 2012, 143 : 1437 - 1456
  • [23] Inside the Black Box: Magnetic Reconnection and the Magnetospheric Multiscale Mission
    Cassak, P. A.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2016, 14 (03): : 186 - 197
  • [24] CONJUNCTION ASSESSMENT CONCEPT OF OPERATIONS FOR THE MAGNETOSPHERIC MULTISCALE (MMS) MISSION
    Wawrzyniak, Geoffrey G.
    Carpenter, J. Russell
    Mattern, Daniel J.
    Williams, Trevor W.
    Ottenstein, Neil A.
    Jones, Brandon A.
    ASTRODYNAMICS 2013, PTS I-III, 2014, 150 : 181 - 200
  • [25] Orbit design for phase I and II of the magnetospheric multiscale mission
    Hughes, SP
    GUIDANCE AND CONTROL 2004, 2004, 118 : 255 - 274
  • [26] Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission
    Lulich, Tyler D.
    Bamford, William A.
    Winternitz, Luke M. B.
    Price, Samuel R.
    PROCEEDINGS OF THE 25TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2012), 2012, : 731 - 742
  • [27] Autonomous formation flying for the PRISMA mission
    Gill, Eberhard
    D'Amico, Simone
    Montenbruck, Oliver
    JOURNAL OF SPACECRAFT AND ROCKETS, 2007, 44 (03) : 671 - 681
  • [28] Mechanism of Reconnection on Kinetic Scales Based on Magnetospheric Multiscale Mission Observations
    Macek, W. M.
    Silveira, M. V. D.
    Sibeck, D. G.
    Giles, B. L.
    Burch, J. L.
    ASTROPHYSICAL JOURNAL LETTERS, 2019, 885 (01)
  • [29] Preface to Special Topic: Plasma Physics from the Magnetospheric Multiscale Mission
    Stawarz, Julia E. E.
    Genestreti, Kevin J. J.
    PHYSICS OF PLASMAS, 2023, 30 (04)
  • [30] Magnetospheric multiscale mission - Cross-scale exploration of complexity in the magnetosphere
    Sharma, AS
    Curtis, SA
    NONEQUILIBRIUM PHENOMENA IN PLASMAS, 2005, 321 : 179 - 195