Sound Velocity Measurement of Shock-Compressed Quartz at Extreme Conditions

被引:3
|
作者
Sun, Liang [1 ]
Zhang, Huan [1 ]
Guan, Zanyang [1 ]
Yang, Weiming [1 ]
Zhang, Youjun [2 ]
Sekine, Toshimori [3 ]
Duan, Xiaoxi [1 ]
Wang, Zhebin [1 ]
Yang, Jiamin [1 ]
机构
[1] China Acad Engn Phys, Laser Fus Res Ctr, Mianyang 621900, Sichuan, Peoples R China
[2] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China
[3] Ctr High Pressure Sci & Technol Adv Res HPSTAR, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
laser shock compression; sound velocity; high-pressure; quartz; Gruneisen parameter; super-earth; HIGH-PRESSURE; SILICA;
D O I
10.3390/min11121334
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The physical properties of basic minerals such as magnesium silicates, oxides, and silica at extreme conditions, up to 1000 s of GPa, are crucial to understand the behaviors of magma oceans and melting in Super-Earths discovered to data. Their sound velocity at the conditions relevant to the Super-Earth's mantle is a key parameter for melting process in determining the physical and chemical evolution of planetary interiors. In this article, we used laser indirectly driven shock compression for quartz to document the sound velocity of quartz at pressures of 270 GPa to 870 GPa during lateral unloadings in a high-power laser facility in China. These measurements demonstrate and improve the technique proposed by Li et al. [PRL 120, 215703 (2018)] to determine the sound velocity. The results compare favorably to the SESAME EoS table and previous data. The Gruneisen parameter at extreme conditions was also calculated from sound velocity data. The data presented in our experiment also provide new information on sound velocity to support the dissociation and metallization for liquid quartz at extreme conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Proton radiography of a shock-compressed target
    Ravasio, A.
    Romagnani, L.
    Le Pape, S.
    Benuzzi-Mounaix, A.
    Cecchetti, C.
    Batani, D.
    Boehly, T.
    Borghesi, M.
    Dezulian, R.
    Gremillet, L.
    Henry, E.
    Hicks, D.
    Loupias, B.
    MacKinnon, A.
    Ozaki, N.
    Park, H. S.
    Patel, P.
    Schiavi, A.
    Vinci, T.
    Clarke, R.
    Notley, M.
    Bandyopadhyay, S.
    Koenig, M.
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [32] The cooling of shock-compressed primordial gas
    Johnson, JL
    Bromm, V
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 366 (01) : 247 - 256
  • [33] Adiabatic Index in Shock-Compressed Beryllium
    Fortmann, C.
    Lee, H. J.
    Doeppner, T.
    Falcone, R. W.
    Kritcher, A. L.
    Landen, O. L.
    Niemann, C.
    Glenzer, S. H.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2012, 52 (03) : 186 - 193
  • [34] Phase transformations in shock-compressed ytterbium
    S. D. Gilev
    Combustion, Explosion, and Shock Waves, 2014, 50 : 227 - 234
  • [35] DEVELOPMENT OF BREAKDOWN IN A SHOCK-COMPRESSED FERROELECTRIC
    NOVITSKII, EZ
    SADUNOV, VD
    COMBUSTION EXPLOSION AND SHOCK WAVES, 1984, 20 (04) : 439 - 441
  • [36] Failure waves in shock-compressed glasses
    Kanel, G. I.
    Shock Compression of Condensed Matter - 2005, Pts 1 and 2, 2006, 845 : 870 - 875
  • [37] Phase transformations in shock-compressed ytterbium
    Gilev, S. D.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2014, 50 (02) : 227 - 234
  • [38] STAR FORMATION IN SHOCK-COMPRESSED LAYERS
    ELMEGREEN, BG
    ELMEGREEN, DM
    ASTROPHYSICAL JOURNAL, 1978, 220 (03): : 1051 - 1062
  • [39] Metallization of Shock-Compressed Liquid Ammonia
    Ravasio, A.
    Bethkenhagen, M.
    Hernandez, J-A
    Benuzzi-Mounaix, A.
    Datchi, F.
    French, M.
    Guarguaglini, M.
    Lefevre, F.
    Ninet, S.
    Redmer, R.
    Vinci, T.
    PHYSICAL REVIEW LETTERS, 2021, 126 (02)
  • [40] VISCOSITY OF SHOCK-COMPRESSED FLUIDS.
    Al'tshuler, L.V.
    Doronin, G.S.
    Kim, G.Kh.
    Journal of applied mechanics and technical physics, 1986, 27 (06) : 887 - 894