Spatially-Variant CNN-Based Point Spread Function Estimation for Blind Deconvolution and Depth Estimation in Optical Microscopy

被引:42
|
作者
Shajkofci, Adrian [1 ,2 ]
Liebling, Michael [1 ,3 ]
机构
[1] Idiap Res Inst, CH-1920 Martigny, Switzerland
[2] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[3] Univ Calif Santa Barbara, Elect & Comp Engn Dept, Santa Barbara, CA 93106 USA
基金
瑞士国家科学基金会;
关键词
Microscopy; point spread function estimation; convolutional neural networks; blind deconvolution; depth from focus; PSF ESTIMATION; IMAGE; RECONSTRUCTION; APPROXIMATIONS; CONTRAST; MODEL;
D O I
10.1109/TIP.2020.2986880
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical microscopy is an essential tool in biology and medicine. Imaging thin, yet non-flat objects in a single shot (without relying on more sophisticated sectioning setups) remains challenging as the shallow depth of field that comes with high-resolution microscopes leads to unsharp image regions and makes depth localization and quantitative image interpretation difficult. Here, we present a method that improves the resolution of light microscopy images of such objects by locally estimating image distortion while jointly estimating object distance to the focal plane. Specifically, we estimate the parameters of a spatially-variant Point Spread Function (PSF) model using a Convolutional Neural Network (CNN), which does not require instrument- or object-specific calibration. Our method recovers PSF parameters from the image itself with up to a squared Pearson correlation coefficient of 0.99 in ideal conditions, while remaining robust to object rotation, illumination variations, or photon noise. When the recovered PSFs are used with a spatially-variant and regularized Richardson-Lucy (RL) deconvolution algorithm, we observed up to 2.1 dB better Signal-to-Noise Ratio (SNR) compared to other Blind Deconvolution (BD) techniques. Following microscope-specific calibration, we further demonstrate that the recovered PSF model parameters permit estimating surface depth with a precision of $\mathrm {2 \mu \text {m} }$ and over an extended range when using engineered PSFs. Our method opens up multiple possibilities for enhancing images of non-flat objects with minimal need for a priori knowledge about the optical setup.
引用
收藏
页码:5848 / 5861
页数:14
相关论文
共 50 条
  • [41] Arbitrarily shaped Point Spread Function (PSF) estimation for single image blind deblurring
    Khan, Aftab
    Yin, Hujun
    VISUAL COMPUTER, 2021, 37 (07): : 1661 - 1671
  • [42] Arbitrarily shaped Point Spread Function (PSF) estimation for single image blind deblurring
    Aftab Khan
    Hujun Yin
    The Visual Computer, 2021, 37 : 1661 - 1671
  • [43] Point Spread Function Estimation and Deblurring Using Code V Optical Imaging
    Abhilasha, A. P.
    Vasudha, S.
    Reddy, Nishant
    Maik, Vivek
    Karibassappa, K.
    2016 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATIONS (ICEIC), 2016,
  • [44] Incoherent Point Spread Function Estimation and Multipoint Deconvolution for Active Incoherent Millimeter-Wave Imaging
    Colon-Berrios, Jorge R.
    Vakalis, Stavros
    Chen, Daniel
    Nanzer, Jeffrey A.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (06) : 800 - 803
  • [45] Asymmetric Point Spread Function Estimation and Deconvolution for Serial-Sectioning Block-Face Imaging
    Walsh, Claire
    Holroyd, Natalie
    Shipley, Rebecca
    Walker-Samuel, Simon
    MEDICAL IMAGE UNDERSTANDING AND ANALYSIS, 2020, 1248 : 235 - 249
  • [46] Improved prior for adaptive optics point spread function estimation from science images: Application for deconvolution
    Lau, A.
    Fetick, R. J. L.
    Neichel, B.
    Beltramo-Martin, O.
    Fusco, T.
    ASTRONOMY & ASTROPHYSICS, 2023, 673
  • [47] Large-FOV 3D localization microscopy by spatially variant point spread function generation
    Xiao, Dafei
    Kedem Orange, Reut
    Opatovski, Nadav
    Parizat, Amit
    Nehme, Elias
    Alalouf, Onit
    Shechtman, Yoav
    SCIENCE ADVANCES, 2024, 10 (10)
  • [48] Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function
    Shaevitz, Joshua W.
    Fletcher, Daniel A.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (09) : 2622 - 2627
  • [49] Image-Based Spatially Variant and Count Rate Dependent Point Spread Function on the HRRT
    Kotasidis, Fotis A.
    Angelis, Georgios I.
    Anton-Rodriguez, Jose
    Markiewicz, Pawel
    Lionheart, William R.
    Reader, Andrew J.
    Matthews, Julian C.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (03) : 1192 - 1202
  • [50] Spatially variant biases considered self-supervised depth estimation based on laparoscopic videos
    Li, Wenda
    Hayashi, Yuichiro
    Oda, Masahiro
    Kitasaka, Takayuki
    Misawa, Kazunari
    Mori, Kensaku
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2022, 10 (03): : 274 - 282