3D-MAN: 3D Multi-frame Attention Network for Object Detection

被引:59
|
作者
Yang, Zetong [1 ]
Zhou, Yin [2 ]
Chen, Zhifeng [3 ]
Ngiam, Jiquan [3 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Waymo LLC, Mountain View, CA USA
[3] Google Res, Brain Team, Mountain View, CA USA
关键词
D O I
10.1109/CVPR46437.2021.00190
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D object detection is an important module in autonomous driving and robotics. However, many existing methods focus on using single frames to perform 3D detection, and do not fully utilize information from multiple frames. In this paper, we present 3D-MAN: a 3D multi-frame attention network that effectively aggregates features from multiple perspectives and achieves state-of-the-art performance on Waymo Open Dataset. 3D-MAN first uses a novel fast single-frame detector to produce box proposals. The box proposals and their corresponding feature maps are then stored in a memory bank. We design a multi-view alignment and aggregation module, using attention networks, to extract and aggregate the temporal features stored in the memory bank. This effectively combines the features coming from different perspectives of the scene. We demonstrate the effectiveness of our approach on the large-scale complex Waymo Open Dataset, achieving state-of-the-art results compared to published single-frame and multi-frame methods.
引用
收藏
页码:1863 / 1872
页数:10
相关论文
共 50 条
  • [21] Multi-view dual attention network for 3D object recognition
    Wenju Wang
    Yu Cai
    Tao Wang
    Neural Computing and Applications, 2022, 34 : 3201 - 3212
  • [22] Multi-view dual attention network for 3D object recognition
    Wang, Wenju
    Cai, Yu
    Wang, Tao
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (04): : 3201 - 3212
  • [23] SCANET: SPATIAL-CHANNEL ATTENTION NETWORK FOR 3D OBJECT DETECTION
    Lu, Haihua
    Chen, Xuesong
    Zhang, Guiying
    Zhou, Qiuhao
    Ma, Yanbo
    Zhao, Yong
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1992 - 1996
  • [24] Multi-Scale PointPillars 3D Object Detection Network
    Ya, Hang
    Luo, Guiming
    PROCEEDINGS OF THE 2019 IEEE 18TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2019), 2019, : 174 - 179
  • [25] 3D Object Detection with LiDAR Based on Multi-Attention Mechanism
    Cao, Jie
    Peng, Yiqiang
    Fan, Likang
    Mo, Lingfan
    Wang, Longfei
    LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (04)
  • [26] POISSON NOISE REMOVAL USING MULTI-FRAME 3D BLOCK MATCHING
    Bodduna, Kireeti
    Weickert, Joachim
    2019 8TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP 2019), 2019, : 58 - 63
  • [27] High-order multilayer attention fusion network for 3D object detection
    Zhang, Baowen
    Zhao, Yongyong
    Su, Chengzhi
    Cao, Guohua
    ENGINEERING REPORTS, 2024, 6 (12)
  • [28] Multi-View 3D Object Detection Network for Autonomous Driving
    Chen, Xiaozhi
    Ma, Huimin
    Wan, Ji
    Li, Bo
    Xia, Tian
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6526 - 6534
  • [29] 3D Object Detection Based on Attention and Multi-Scale Feature Fusion
    Liu, Minghui
    Ma, Jinming
    Zheng, Qiuping
    Liu, Yuchen
    Shi, Gang
    SENSORS, 2022, 22 (10)
  • [30] A multilevel fusion network for 3D object detection
    Xia, Chunlong
    Wei, Ping
    Wei, Wenwen
    Zheng, Nanning
    NEUROCOMPUTING, 2021, 437 : 107 - 117