Using GEDI Waveforms for Improved TanDEM-X Forest Height Mapping: A Combined SINC plus Legendre Approach

被引:7
|
作者
Chen, Hao [1 ]
Cloude, Shane R. [2 ]
White, Joanne C. [1 ]
机构
[1] Nat Resources Canada, Canadian Forest Serv, 506 West Burnside Rd, Victoria, BC V8Z 1M5, Canada
[2] AEL Consultants, Cupar KY15 5AA, Scotland
关键词
Legendre; SINC; interferometric coherence; LiDAR waveform; forest height; LIDAR; INSAR;
D O I
10.3390/rs13152882
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, we consider a new method for forest canopy height estimation using TanDEM-X single-pass radar interferometry. We exploit available information from sample-based, space-borne LiDAR systems, such as the Global Ecosystem Dynamics Investigation (GEDI) sensor, which offers high-resolution vertical profiling of forest canopies. To respond to this, we have developed a new extended Fourier-Legendre series approach for fusing high-resolution (but sparsely spatially sampled) GEDI LiDAR waveforms with TanDEM-X radar interferometric data to improve wide-area and wall-to-wall estimation of forest canopy height. Our key methodological development is a fusion of the standard uniform assumption for the vertical structure function (the SINC function) with LiDAR vertical profiles using a Fourier-Legendre approach, which produces a convergent series of approximations of the LiDAR profiles matched to the interferometric baseline. Our results showed that in our test site, the Petawawa Research Forest, the SINC function is more accurate in areas with shorter canopy heights (<similar to 27 m). In taller forests, the SINC approach underestimates forest canopy height, whereas the Legendre approach avails upon simulated GEDI forest structural vertical profiles to overcome SINC underestimation issues. Overall, the SINC + Legendre approach improved canopy height estimates (RMSE = 1.29 m) compared to the SINC approach (RMSE = 4.1 m).
引用
收藏
页数:12
相关论文
共 38 条
  • [21] Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data
    Qi, Wenlu
    Saarela, Svetlana
    Armston, John
    Stahl, Goran
    Dubayah, Ralph
    REMOTE SENSING OF ENVIRONMENT, 2019, 232
  • [22] An Investigation of Forest Height Estimation by using TanDEM-X Local InSAR Phase Center Variations
    Choi, Changhyun
    Pardini, Matteo
    Guliaev, Roman
    Papathanassiou, Kostantinos
    13TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR, EUSAR 2021, 2021, : 639 - 642
  • [23] Forest Canopy Height Retrieval Based on TanDEM-X Data and Improved Three-Stage Inversion Algorithm
    Zhang G.
    Zhang W.
    Yue C.
    Linye Kexue/Scientia Silvae Sinicae, 2022, 58 (04): : 152 - 164
  • [24] Mapping boreal forest biomass from a SRTM and TanDEM-X based on canopy height model and Landsat spectral indices
    Sadeghi, Yaser
    St-Onge, Benoit
    Leblon, Brigitte
    Prieur, Jean-Francois
    Simard, Marc
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 68 : 202 - 213
  • [25] Estimation of Forest Height Using Google Earth Engine Machine Learning Combined with Single-Baseline TerraSAR-X/TanDEM-X and LiDAR
    Bao, Junfan
    Zhu, Ningning
    Chen, Ruibo
    Cui, Bin
    Li, Wenmei
    Yang, Bisheng
    FORESTS, 2023, 14 (10):
  • [26] USING THE TWO-LEVEL MODEL WITH TANDEM-X FOR LARGE-SCALE FOREST MAPPING
    Persson, Henrik J.
    Soja, Maciej J.
    Fransson, Johan E. S.
    Ulander, Lars M. H.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4484 - 4487
  • [27] Experiences from Large-Scale Forest Mapping of Sweden Using TanDEM-X Data
    Persson, Henrik J.
    Olsson, Hakan
    Soja, Maciej J.
    Ulander, Lars M. H.
    Fransson, Johan E. S.
    REMOTE SENSING, 2017, 9 (12):
  • [28] Strategies for Forest Height Estimation by High-Precision DEM Combined with Short-Wavelength PolInSAR TanDEM-X
    Luo, Hongbin
    Zhang, Wanqiu
    Yue, Cairong
    Chen, Si
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2023, 89 (06): : 385 - 392
  • [29] Mapping forest successional stages in the Brazilian Amazon using forest heights derived from TanDEM-X SAR interferometry
    Bispo, Polyanna Da Conceicao
    Pardini, Matteo
    Papathanassiou, Konstantinos P.
    Kugler, Florian
    Balzter, Heiko
    Rains, Dominik
    dos Santos, Joao Roberto
    Rizaev, Igor G.
    Tansey, Kevin
    dos Santos, Maiza Nara
    Araujo, Luciana Spinelli
    REMOTE SENSING OF ENVIRONMENT, 2019, 232
  • [30] Evaluating the Impacts of Using Different Digital Surface Models to Estimate Forest Height with TanDEM-X Interferometric Coherence Data
    CHEN Hao
    HILL David A
    WHITE Joanne C
    CLOUDE Shane R
    雷达学报, 2020, 9 (02) : 386 - 398