Using GEDI Waveforms for Improved TanDEM-X Forest Height Mapping: A Combined SINC plus Legendre Approach

被引:7
|
作者
Chen, Hao [1 ]
Cloude, Shane R. [2 ]
White, Joanne C. [1 ]
机构
[1] Nat Resources Canada, Canadian Forest Serv, 506 West Burnside Rd, Victoria, BC V8Z 1M5, Canada
[2] AEL Consultants, Cupar KY15 5AA, Scotland
关键词
Legendre; SINC; interferometric coherence; LiDAR waveform; forest height; LIDAR; INSAR;
D O I
10.3390/rs13152882
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, we consider a new method for forest canopy height estimation using TanDEM-X single-pass radar interferometry. We exploit available information from sample-based, space-borne LiDAR systems, such as the Global Ecosystem Dynamics Investigation (GEDI) sensor, which offers high-resolution vertical profiling of forest canopies. To respond to this, we have developed a new extended Fourier-Legendre series approach for fusing high-resolution (but sparsely spatially sampled) GEDI LiDAR waveforms with TanDEM-X radar interferometric data to improve wide-area and wall-to-wall estimation of forest canopy height. Our key methodological development is a fusion of the standard uniform assumption for the vertical structure function (the SINC function) with LiDAR vertical profiles using a Fourier-Legendre approach, which produces a convergent series of approximations of the LiDAR profiles matched to the interferometric baseline. Our results showed that in our test site, the Petawawa Research Forest, the SINC function is more accurate in areas with shorter canopy heights (<similar to 27 m). In taller forests, the SINC approach underestimates forest canopy height, whereas the Legendre approach avails upon simulated GEDI forest structural vertical profiles to overcome SINC underestimation issues. Overall, the SINC + Legendre approach improved canopy height estimates (RMSE = 1.29 m) compared to the SINC approach (RMSE = 4.1 m).
引用
收藏
页数:12
相关论文
共 38 条
  • [1] FUSION OF TANDEM-X AND GEDI DATA FOR MAPPING FOREST HEIGHT IN THE BRAZILIAN AMAZON
    Choi, Changhyun
    Pardini, Matteo
    Guliaev, Roman
    Papathanassiou, Konstantinos P.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5429 - 5431
  • [2] Large-Scale Forest Height Mapping by Combining TanDEM-X and GEDI Data
    Choi, Changhyun
    Cazcarra-Bes, Victor
    Guliaev, Roman
    Pardini, Matteo
    Papathanassiou, Konstantinos P. P.
    Qi, Wenlu
    Armston, John
    Dubayah, Ralph O. O.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 2374 - 2385
  • [3] Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data
    Qi, Wenlu
    Lee, Seung-Kuk
    Hancock, Steven
    Luthcke, Scott
    Tang, Hao
    Armston, John
    Dubayah, Ralph
    REMOTE SENSING OF ENVIRONMENT, 2019, 221 : 621 - 634
  • [4] Mapping large-scale pantropical forest canopy height by integrating GEDI lidar and TanDEM-X InSAR data
    Qi, Wenlu
    Armston, John
    Choi, Changhyun
    Stovall, Atticus
    Saarela, Svetlana
    Pardini, Matteo
    Fatoyinbo, Lola
    Papathanassiou, Konstantinos
    Pascual, Adrian
    Dubayah, Ralph
    REMOTE SENSING OF ENVIRONMENT, 2025, 318
  • [5] Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping
    Qi, Wenlu
    Dubayah, Ralph O.
    REMOTE SENSING OF ENVIRONMENT, 2016, 187 : 253 - 266
  • [6] MAPPING FOREST CANOPY HEIGHT USING TANDEM-X DSM AND AIRBORNE LIDAR DTM
    Sadeghi, Yaser
    St-Onge, Benoit
    Leblon, Brigitte
    Simard, Marc
    Papathanassiou, Kostas
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [7] WIDE AREA FOREST HEIGHT MAPPING USING TANDEM-X STANDARD MODE DATA
    Chen, H.
    Goodenough, D. G.
    Cloude, S. R.
    Padda, P.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3782 - 3785
  • [8] FOREST HEIGHT ESTIMATION AND VALIDATION USING TANDEM-X POLINSAR
    Cloude, S. R.
    Chen, H.
    Goodenough, D. G.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1889 - 1892
  • [9] Forest Biomass Mapping Using Continuous InSAR and Discrete Waveform Lidar Measurements: A TanDEM-X/GEDI Test Study
    Choi, Changhyun
    Pardini, Matteo
    Armston, John
    Papathanassiou, Konstantinos P.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 7675 - 7689
  • [10] FOREST STRUCTURE MODELING OF A CONIFEROUS FOREST USING TANDEM-X INSAR AND SIMULATED GEDI LIDAR DATA
    Qi, Wenlu
    Dubayah, Ralph O.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 914 - 917