A high rate Li-rich layered MNC cathode material for lithium-ion batteries

被引:67
|
作者
Ates, Mehmet Nurullah [1 ]
Mukerjee, Sanjeev [1 ]
Abraham, K. M. [1 ]
机构
[1] Northeastern Univ, Dept Chem & Chem Biol, Ctr Renewable Energy Technol, Boston, MA 02115 USA
来源
RSC ADVANCES | 2015年 / 5卷 / 35期
关键词
X-RAY-ABSORPTION; STRUCTURAL TRANSFORMATION; RATE CAPABILITY; OXIDE MATERIAL; HIGH-CAPACITY; ELECTRODES; LINI0.85CO0.15O2; PERFORMANCE; STABILITY;
D O I
10.1039/c4ra17235c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a high rate Li-rich layered manganese nickel cobalt (MNC) oxide cathode material of the composition 0.5Li(2)MnO(3)center dot 0.5LiMn(0.5)Ni(0.35)Co(0.15)O(2), termed Li-rich MNC cathode material, with discharge capacities of 200, 250, and 290 mA h g(-1) at C, C/4 and C/20 rates, respectively, for Li-ion batteries. This high rate discharge performance combined with little capacity fade during long term cycling is unprecedented for this class of lithium ion (Li-ion) cathode materials. The exceptional electrochemistry of the Li-rich MNC in Li-ion cells is attributed to its open porous morphology and high electronic conductivity. The structure of the material investigated by means of X-ray diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and X-ray Absorption Spectroscopy (XAS) combined with electrochemical data revealed that the porous morphology was effective in allowing electrolyte penetration through the particle grains in tandem with its high electronic conductivity to provide high Li+ transport for high rate discharge. Extended cycling behavior and structural phase transition of the new material were further examined through Field Emission Scanning Electron Microscopy (FESEM), XRD, XAS and HRTEM. The new Li-rich MNC cathode material could provide the next generation Li-ion batteries with specific energy exceeding 400 W h kg(-1) or energy density over 1000 W h l(-1).
引用
收藏
页码:27375 / 27386
页数:12
相关论文
共 50 条
  • [31] Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries
    Shiyou Li
    Xiaolan Fu
    Youwei Liang
    Jing Xie
    Yuan Wei
    Li Yang
    Yamin Han
    Wenbo Li
    Xiaoling Cui
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 5376 - 5384
  • [32] Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries
    Li, Shiyou
    Fu, Xiaolan
    Liang, Youwei
    Xie, Jing
    Wei, Yuan
    Yang, Li
    Han, Yamin
    Li, Wenbo
    Cui, Xiaoling
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (07) : 5376 - 5384
  • [33] Gradient "Single-Crystal" Li-Rich Cathode Materials for High-Stable Lithium-Ion Batteries
    Wu, Tianhao
    Zhang, Xu
    Wang, Yinzhong
    Zhang, Nian
    Li, Haifeng
    Guan, Yong
    Xiao, Dongdong
    Liu, Shiqi
    Yu, Haijun
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (04)
  • [34] Fabrication of nanoplate Li-rich cathode material via surfactant-assisted hydrothermal method for lithium-ion batteries
    Zhou, Hongming
    Yang, Zhaohui
    Yin, Chengjie
    Yang, Shengliang
    Li, Jian
    CERAMICS INTERNATIONAL, 2018, 44 (16) : 20514 - 20523
  • [35] Design Strategies for Enhancing the Electrochemical Performance of Li-Rich Cathode Materials for Lithium-Ion Batteries
    Hu, Chen
    Jin, Yi
    Geng, Tianfeng
    Sun, Dandan
    Du, Chunyu
    Jian, Jiyuan
    Yin, Geping
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (11): : 10936 - 10954
  • [36] Improved Rate Capability of Layered Li-Rich Cathode for Lithium Ion Battery by Electrochemical Treatment
    Wang, Jun
    He, Xin
    Paillard, Elie
    Liu, Haidong
    Passerini, Stefano
    Winter, Martin
    Li, Jie
    ECS ELECTROCHEMISTRY LETTERS, 2013, 2 (08) : A78 - A80
  • [37] Co-gradient Li-rich cathode relieving the capacity decay in Lithium-ion batteries
    Wang, Hong
    Liu, Fang
    Yu, Ruohan
    Xiao, Zhitong
    Zhu, Zhu
    Zhou, Liang
    Wu, Jinsong
    NANO ENERGY, 2022, 100
  • [38] Challenges and Recent Advances in High Capacity Li-Rich Cathode Materials for High Energy Density Lithium-Ion Batteries
    He, Wei
    Guo, Weibin
    Wu, Hualong
    Lin, Liang
    Liu, Qun
    Han, Xiao
    Xie, Qingshui
    Liu, Pengfei
    Zheng, Hongfei
    Wang, Laisen
    Yu, Xiqian
    Peng, Dong-Liang
    ADVANCED MATERIALS, 2021, 33 (50)
  • [39] Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries
    Zheng, Fenghua
    Ou, Xing
    Pan, Qichang
    Xiong, Xunhui
    Yang, Chenghao
    Fu, Zhiyong
    Liu, Meilin
    CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 497 - 507
  • [40] Preparation and electrochemical performance of Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, for lithium-ion batteries
    Feng Wu
    Huaquan Lu
    Yuefeng Su
    Ning Li
    Liying Bao
    Shi Chen
    Journal of Applied Electrochemistry, 2010, 40 : 783 - 789