Improved finite element triangular meshing for symmetric geometries using MATLAB

被引:2
|
作者
Shylaja, G. [1 ]
Venkatesh, B. [1 ]
Naidu, V. Kesavulu [1 ]
Murali, K. [1 ]
机构
[1] Amrita Vishwa Vidyapeetham, Dept Math, Amrita Sch Engn, Bengaluru, India
关键词
Curved triangular element; Meshing; Symmetric Geometries; Finite Element Method;
D O I
10.1016/j.matpr.2020.09.665
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A MATLAB code for generation of curved triangular elements in two dimensions is presented. The method is based on the MATLAB meshing scheme distmesh2d provided by Persson and Strang. The meshing scheme generates triangular meshing for three symmetric geometries circle, ellipse and annular ring. Meshing scheme procedures are performed for linear (3-noded), quadratic (6-noded) and cubic (10noded) curved triangular elements. As an output, we get a triangular meshing of symmetric geometry, node position, element connectivity and boundary edges. These outputs can be used to solve some class of partial differential equations (PDEs) by using finite element method (FEM). (c) 2020 Elsevier Ltd. Selection and peer-review under responsibility of the scientific committee of the International Conference on Advances in Materials and Manufacturing Applications.
引用
收藏
页码:4375 / 4380
页数:6
相关论文
共 50 条
  • [31] Finite element modeling and multigrid preconditioner using adaptive triangular meshes
    Zhu, Yu
    Kuo, An-Yu
    Cangellaris, Andreas C.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2006, 16 (06) : 357 - 359
  • [32] Finite Element Modeling and Dynamic Simulation of Nonlinear VRM using MATLAB
    Benamimour, Tariq
    Bentounsi, Amar
    Djeghloud, Hind
    Bouchareb, Ilhem
    2013 5TH INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND APPLIED OPTIMIZATION (ICMSAO), 2013,
  • [33] Enhanced finite element modelling of Cu electromigration using ANSYS and matlab
    Li, Wei
    Tan, Cher Ming
    MICROELECTRONICS RELIABILITY, 2007, 47 (9-11) : 1497 - 1501
  • [34] Nonnegative moment coordinates on finite element geometries
    Dieci, L.
    Difonzo, Fabio, V
    Sukumar, N.
    MATHEMATICS IN ENGINEERING, 2024, 6 (01): : 81 - 99
  • [35] Flow curve determination of thin films by improved finite element models and different nanoindenter geometries
    Bobzin, K.
    Bagcivan, N.
    Brugnara, R. H.
    Perne, J.
    THIN SOLID FILMS, 2013, 549 : 313 - 320
  • [36] A finite element analysis of orthogonal machining using different tool edge geometries
    Yen, YC
    Jain, AR
    Altan, T
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 146 (01) : 72 - 81
  • [37] Finite element analysis of a solar collector plate using two plate geometries
    Medina Carril, D. M.
    Carrillo, J. G.
    Maldonado, R. D.
    Aviles, F.
    INGENIERIA E INVESTIGACION, 2016, 36 (03): : 95 - 101
  • [38] Neural network finite element meshing for the simulation of light propagation
    Bohn, CA
    PROCEEDINGS OF THE FIFTH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1 AND 2, 2000, : 904 - 907
  • [39] DFNMesh: Finite element meshing for discrete fracture matrix models
    Lima, Pedro
    Shauer, Nathan
    Villegas, Jose B.
    Devloo, Philippe R. B.
    ADVANCES IN ENGINEERING SOFTWARE, 2023, 186
  • [40] IDENTIFICATION OF MESHING STIFFNESS FUNCTION BY MEANS OF FINITE ELEMENT METHOD
    Grzesica, Przemyslaw
    SCIENTIFIC JOURNAL OF SILESIAN UNIVERSITY OF TECHNOLOGY-SERIES TRANSPORT, 2014, 82 : 103 - 108