A Gould type integral of fuzzy functions

被引:8
|
作者
Iosif, Alina [1 ]
Gavrilut, Alina [2 ]
机构
[1] Petr Gas Univ Ploiesti, Dept Comp Sci Informat Technol Math & Phys, Bd Bucuresti 39, Ploiesti 100680, Romania
[2] Alexandru Ioan Cuza Univ, Fac Math, Bd Carol 1,11, Iasi 700506, Romania
关键词
Fuzzy-valued function; Gould integral; Uncertainty; Non-additive set function; DECISION-MAKING; VALUED MEASURES; MULTISUBMEASURE; RESPECT; SETS;
D O I
10.1016/j.fss.2017.08.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, a new type of integral of a fuzzy-valued function relative to a non-negative set function is proposed as a new useful tool in modeling uncertainties. Various properties of this new type of integral are established concerning the behavior with respect to the fuzzy function or to the set function. Several examples linking our integral with Birkhoff and Lebesgue integrals are provided. Also, problems related to atomicity are addressed. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:26 / 41
页数:16
相关论文
共 50 条
  • [41] On Hankel type integral transformations of generalized functions
    Malgonde, SP
    Debnath, L
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (05) : 421 - 430
  • [42] Choquet Integral of Fuzzy-Number-Valued Functions: The Differentiability of the Primitive with respect to Fuzzy Measures and Choquet Integral Equations
    Gong, Zengtai
    Chen, Li
    Duan, Gang
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [43] Application of radial basis functions in solving fuzzy integral equations
    Asari, Sh. S.
    Amirfakhrian, M.
    Chakraverty, S.
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (10): : 6373 - 6381
  • [44] On Henstock integral of fuzzy-number-valued functions (I)
    Wu, CX
    Gong, ZT
    FUZZY SETS AND SYSTEMS, 2001, 120 (03) : 523 - 532
  • [45] Application of radial basis functions in solving fuzzy integral equations
    Sh. S. Asari
    M. Amirfakhrian
    S. Chakraverty
    Neural Computing and Applications, 2019, 31 : 6373 - 6381
  • [46] Some integral inequalities for fuzzy-interval-valued functions
    Costa, T. M.
    Roman-Flores, H.
    INFORMATION SCIENCES, 2017, 420 : 110 - 125
  • [48] General Chebyshev Type Inequality for Seminormed Fuzzy Integral
    Boczek, Michal
    Hovana, Anton
    Hutnik, Ondrej
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2019), 2019, 11676 : 3 - 16
  • [49] Partition type fuzzy integral model for evaluation process
    Matsushita, Y
    Kambara, H
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1997, 5 (05) : 531 - 545
  • [50] CONVERGENCE THEOREMS OF THE GOULD INTEGRAL WITH RESPECT TO A SUBMEASURE
    Iosif, Alina Emilia
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (02): : 319 - 330